Что делать, чтобы роботизированная коробка передач не ломалась
Что может сломаться в «роботе»
Самый пугающий (но на самом деле самый безобидный) симптом проявляется в следующем: «мозги» коробки в какой-то момент перестают распознавать положение селектора или не разрешают включить Drive или Reverse, а в некоторых случаях — даже завести мотор. В режим самозащиты «робот» может перейти либо при перегреве, либо при сбоях в работе датчиков. Сильный перегрев, кстати, их и «перекашивает», делая проблему регулярной.
«Робот» с одним диском, несмотря на простоту конструкции, не может похвастаться огромным ресурсом. Если сама коробка обычно служит долго, то сцепление изнашивается быстрее, чем у опытного водителя, ездящего на «механике» — порой уже через 20–30 тыс. км. Нередки и отказы его сервопривода, которому требуется немалое усилие для размыкания дисков.
Тонким местом преселективных коробок тоже оказались сцепления. Их износ — самая распространённая неисправность трансмиссий этого типа. Традиционные «сухие» диски сцепления, нормально работающие в паре с МКПП, при быстрых и частых переключениях «робота» склонны к перегреву и, как следствие, быстрому износу и деформации, поэтому их применяют только там, где нагрузки на коробку относительно невелики. С мощными моторами или на тяжёлых машинах приходится использовать многодисковые сцепления, работающие в специальном масле, которое их охлаждает. И всё равно для узла «сухих» сцеплений в преселективной коробке неплохим ресурсом считаются 60–70 тыс. км, «мокрые» могут прослужить вдвое дольше, но их обслуживание и замена обходятся значительно дороже. Верные признаки износа сцеплений — толчки при переключениях, вибрации при старте автомобиля с места.
Чтобы коробка переключалась плавно, а сцепления служили долго, требуется очень точная и согласованная работа систем управления сцеплениями и сменой передач. Если заведующий этим мехатронный блок настроен недостаточно тонко и неточно исполняет команды электронной программы управления, то коробка начинает методично убивать сама себя.
Именно мехатроника — самая капризная часть «робота». Этот блок, совмещающий в себе электронные и гидравлические части для приводных механизмов, работает в довольно сложных условиях — ему приходится с большой частотой выполнять разные команды, выдерживать большое давление рабочей жидкости (она отличается от масла, залитого в саму коробку), подстраивать свои режимы под текущие условия езды, режимы и фактический износ сцеплений. В общем, сбои, перегревы, отклонения в работе управляющих соленоидов, загрязнение масляных каналов, подтёки и даже трещины в корпусе мехатронного блока — список возможных проблем довольно обширен.
Самые редкие, но тоже больно бьющие по карману неисправности связаны с механической частью коробки. Износ валов, шестерёнок, вилок переключения, подшипников и прочих деталей редуктора (всё это проявляется специфическим шумом или заминками в переключениях передач) лечится, как правило, только капитальным ремонтом «робота». Либо его полной заменой.
Впрочем, не всё так драматично. Инженеры постоянно работают над повышением надёжности «роботов» с двумя сцеплениями. Если правильно эксплуатировать и обслуживать, то сегодня даже «сухая» конструкция способна без каких-либо проблем и дорогостоящих замен пройти 150–200 тысяч пробега.
Вариатор, робот или обычный автомат — что выбрать? — журнал За рулем
Общие соображения насчет плюсов и минусов «ручки» и автомата мы недавно высказывали. Однако тут же пообещали продолжить тему: ведь автоматы не ограничиваются одной только гидромеханикой. Разбираемся в роботах, вариаторах и прочих DSG.
Впервые столкнулся с этим типом коробки передач, взяв в середине нулевых в аренду в Италии Fiat Grande Punto с 90-сильным турбодизелем и однодисковым роботом.
На таком склоне «фиатик» подарил мне несколько седых волос.На таком склоне «фиатик» подарил мне несколько седых волос.
Материалы по теме
Машина один раз настолько быстро предательски покатилась назад, что едва не повредила стену замка, стоявшего там с XIV века. Из других воспоминаний — безобразный разгон, неадекватное поведение в пробках. Редакционные Веста и Иксрей с АМТ также показали себя не с лучшей стороны во время поездок по городу. Дерганые и неприятные в управлении машины. Да и ресурс сцепления, по словам коллеги, постоянно ездящего на Весте, оказался весьма невысок. Короче, мое мнение: однодисковый робот — ни за что. Лучше танцевать джигу на педалях служебного Ларгуса с механической коробкой передач в диких московских пробках, когда десяток километров порой продираешься час, чем такие автоматы.Робот с двумя сцеплениями
Примеры использования: некоторые модели Mercedes-Benz, BMW, Mini, Ford, большинство автомобилей концерна Volkswagen, включая Audi, Skoda, Seat.
Суть идеи состоит в том, что за четные и нечетные передачи отвечают отдельные первичные валы и, соответственно, отдельные диски сцепления. Если вы движетесь на первой передаче, то второй вал уже вращается на второй! За счет этого переключение происходит очень быстро — за миллисекунды. Человек на такую проворность неспособен. При этом никакие рывки во время смены передач практически не ощущаются. Используются как «мокрые» диски сцепления, работающие в масле, — тогда это шестиступенчатая коробка DSG 6, так и «сухие» — 7-ступенчатая DSG. Ресурс «сухих» сцеплений весьма ограничен и практически никогда не достигает 100 000 км пробега, а при агрессивной езде не превышает порой 30 000 км.
Коробка DSG с «мокрым сцеплением» для автомобилей с поперечным расположением двигателя.Коробка DSG с «мокрым сцеплением» для автомобилей с поперечным расположением двигателя.
Достоинства | Недостатки |
|
|
Шкода с роботизированной коробкой передач DSG. Мечта на протяжении первых 30–80 тысяч километров пробега.
Личные впечатления ограничиваются поездками на автомобилях, которые нашему издательству предоставляют для испытаний российские представительства различных марок. Машины эти практически новые, с небольшими пробегами, на которых характерные проблемы двухдисковых роботов еще не успели проявиться. Все выглядит отлично: быстро, мощно, тихо — одни плюсы. Если же выбирать автомобиль для личного пользования, а пробег предстоит накатывать большой, то лучше предпочесть в качестве коробки передач традиционный гидромеханический автомат или старую добрую механику.
Вариаторы
Кайф от такой коробки состоит в том, что привычных ступенчатых переключений здесь нет в принципе! На входном и выходном валах закреплены конусообразные диски, образующие в сумме эдакий шкив с изменяемым диаметром. Валы соединяет передача — клиноременная, цепная и т.п. Смещая конусы друг относительно друга, можно плавно изменять передаточное число. Игрушка — не из дешевых. Для работы требуется особая трансмиссионная жидкость, уровень которой нужно тщательно контролировать.
Разновидностей вариаторов довольно много — ниже перечислены основные.
Вариатор клиноременный
Примеры использования: Nissan Qashqai, Nissan X-Trаil, Renault Kaptur, Mitsubishi Outlander и др.
Бесступенчатые коробки передач часто устанавливают на популярные кроссоверы. Логика проста: для семейной машины более комфортной в работе коробки еще не придумали.Бесступенчатые коробки передач часто устанавливают на популярные кроссоверы. Логика проста: для семейной машины более комфортной в работе коробки еще не придумали.
Клиноременный вариатор на сегодняшний день наиболее распространенный тип бесступенчатых коробок передач. Крутящий момент транслирует металлический толкающий ремень. Торцы надетых на ленту трапециевидных элементов, соприкасаясь с конусами, приводят их во вращение. Вместе с тем применен обычный гидротрансформатор с блокировкой, как на гидромеханических автоматах. При троганье с места гидротрансформатор повышает крутящий момент двигателя вплоть до величины в четыре раза большей. Применение этого узла обеспечивает плавное начало движения при передвижении в городских пробках.
Вариатор может быть даже компактнее механической коробки передач.Вариатор может быть даже компактнее механической коробки передач.
Достоинства | Недостатки |
|
|
Вариатор клиноцепной
Примеры использования: Audi А6, Subaru Forester.
Устройство похоже на клиноременный вариатор, но вместо ремня в качестве передачи используется металлическая цепь, состоящая из пластин, соединенных клиновидными осями. Именно торцы этих осей и передают крутящий момент. Другое отличие состоит в том, что в коробках Audi используется пакет сцеплений и двухмассовый маховик вместо гидротрансформатора.
Вариатор, устанавливаемый на Ауди, спроектирован под продольное расположение двигателя.Вариатор, устанавливаемый на Ауди, спроектирован под продольное расположение двигателя.
Достоинства | Недостатки |
|
|
Оба типа бесступенчатых трансмиссий в последнее время стали делать с виртуальными ступенями. Якобы это больше нравится водителям, потому что двигатель не воет на одной ноте.
Обычно вариатор быстро перегревается при езде по серьезному бездорожью. Достаточно немного побуксовать. Но есть и исключения. Например, Subaru Forester, оснащенный вариатором, способен на многое за пределами асфальта.Обычно вариатор быстро перегревается при езде по серьезному бездорожью. Достаточно немного побуксовать. Но есть и исключения. Например, Subaru Forester, оснащенный вариатором, способен на многое за пределами асфальта.
По потребительским свойствам вариатор — лучший тип коробки передач. Она обеспечивает быстрый разгон, а что до монотонного звука… Помнится, Хоттабыч удалил звук двигателей летящего самолета, а к чему это привело? Участники событий едва спаслись… На ровном шоссе при скорости автомобиля чуть за сотню обороты двигателя не достигают 2000. Торможение двигателем — есть. Лично я побаиваюсь за ресурс ремня и грею зимой даже больше не двигатель, а вариатор. А так — идеальная коробка (тьфу, не передач)!
И, да, забыл: вариаторы на склоне назад не откатываются!
Старая добрая гидромеханическая коробка передач
Примеры использования: практически весь модельный ряд корейских и американских брендов, а также относительно мощные автомобили других производителей.
Представляет собой ступенчатую планетарную коробку передач, соединенную с двигателем через гидротрансформатор. Выбор и переключение планетарных рядов раньше осуществлялись гидромеханически, а сейчас вездесущая электроника вместе с системой управления двигателем определяет, на какой передаче следует работать силовому агрегату в данный момент. Число ступеней постоянно увеличивается, достигая девяти на самых дорогих автомобилях.Достоинства | Недостатки |
|
|
Материалы по теме
Четырехступенчатые гидромеханические коробки передач современным требованиям удовлетворяют все меньше и меньше. На разгоне и при эксплуатации в городе переключения чувствуются довольно заметно. На трассовых скоростях велик расход топлива из-за невозможности обеспечить оптимальные обороты двигателя. Даже небольшое увеличение подачи топлива приводит к переходу на третью передачу, и двигатель взвывает еще сильнее.Здесь особенно выделяется «всефранцузская» четырехступенчатая коробка передач DP0. Эту коробку и ее многочисленные реинкарнации до сих пор устанавливают на огромное число относительно маломощных автомобилей Peugeot, Citroen и Renault. Наиболее часто в нашей стране с этой коробкой сталкивались владельцы таких автомобилей, как Peugeot 307, Citroen С4, Renault Logan (со всем семейством) и Megane. Нрав коробки довольно строптивый, случаются «затыки» с переключениями. Надежность тоже не выдающаяся: редкая КП этого типа доживает до 80 тысяч км без ремонта. Причем иногда удается обойтись заменой клапанов, а порой приходится менять половину «начинки».
А вот «всеяпонский» производитель автоматов Jatco сумела сделать относительно беспроблемную «четырехступку». Одна из версий ставится даже на седанчик и хэтчбек, выпускающиеся у нас под японским брендом Datsun.
И все-таки для современного автомобиля с гидромеханическим автоматом число ступеней должно быть не меньше шести. Сверхпопулярные Rio и Solaris в последней генерации это полностью подтверждают. Многоступенчатые автоматы куда экономичнее, особенно при езде по трассе. На мощных бизнес-седанах, на тяжелых кроссоверах и внедорожниках альтернативы гидромеханическим трансмиссиям и вовсе нет и пока не предвидится. Скорее уж они станут гибридными, и тогда вся трансмиссия будет скомпонована совсем иначе. Но это уже другая история.
Выводы
Для тяжелых условий эксплуатации, для мощных двигателей или в ситуации, когда нравящаяся машина не выпускается с другим типом автомата, можно брать гидромеханическую коробку передач. Но с числом ступеней не меньше шести.
Вариатор хорош в составе малых и средних автомобилей (не больше, чем среднеразмерный кроссовер).
Автомобиль с роботизированной коробкой передач и двумя сцеплениями советую покупать, только если вы собираетесь ездить на нем не дольше гарантийного срока. Дальше все преимущества будут нивелированы дорогостоящим ремонтом. Автомобили с однодисковым роботом, на мой взгляд, не достигли совершенства в области удобства управления тягой и не отличаются высокой надежностью в трудных условиях.
В заключение, как обычно, жду от вас комментариев. Какой тип коробки передач вам нравится, на каком ездите и о каком мечтаете?
Фото: «За рулем» и фирмы-производители
Робот и автомат в чем разница
Начиная с конца 80-х годов прошлого века, инженеры стремятся максимально нивелировать разницу между автоматическими и механическими трансмиссиями.
Одним из результатов такой работы стало появление роботизированной «механики», которая на сегодняшний день присутствует в модельных линейках почти всех крупных автопроизводителей.
Какими же преимуществами и недостатками обладает такой «робот» в сравнении с классическим «автоматом»?
Недостатки и особенности робота
Начнем с конструктивных особенностей «робота», который по сути является механической коробкой передач, но без третьей педали. За выжим сцепления в такой КП отвечает электропривод (актуатор).
В отличие от автоматической коробки с гидротрансформатором, конструкция роботизированной «механики» значительно проще, поэтому и дешевле в производстве. Последнее преимущество сыграло главную роль в быстром появлении «роботов» на многих недорогих моделях.
Но как оказалось, производители немного поспешили с массовым запуском такой трансмиссии на рынок. Все дело в том, что большинство «роботов», особенно при активной езде, не обеспечивали плавного переключения передач, раздражая водителей рывками и задержками при смене ступеней, а также откатом при старте на подъеме. Кроме того, роботизированные КП не могли похвастаться высокой надежностью.
Роботизированная коробка передач с двойным сцеплением
Улучшить плавность «роботов» взялся концерн Volkswagen, внедрив на своих моделях в середине 2000-х годов преселективный «робот» с двумя сцеплениями (DSG). В таких трансмиссиях четные и нечетные передачи, расположены на отдельных валах, оснащенных индивидуальными сцеплениями.
Новый тип КП хоть и стал совсем недешевым в производстве, но избавился от медлительности первых «роботов» и даже смог обеспечить автомобилю динамику разгона лучше, чем у версий с обычной «механикой». В дальнейшем многие ведущие автопроизводители также начали переходить на подобные “автоматы”, заказывая их у ведущих производителей трансмиссий.
Впрочем, в некоторых случаях остались вопросы к надежности отдельных КП данного типа. Но в сравнении с прежним «роботом» плавность и скорость переключений выросла просто несравнимо.
В подтверждение этого превосходства отметим, что в настоящий момент большинство брендов уже отказались от применения «роботов» на базе классических механических КП и в ближайшем будущем такая трансмиссия может уйти в историю.
Помимо «скорострельности», современные роботизированные КП превосходят классические «автоматы» и по экономичности. «Роботы» вполне способны помогать двигателю расходовать топливо на уровне версий с «механикой».
Классический автомат
Казалось бы, будущее «гидротрансформаторных автоматов» предрешено, тем не менее, «старая гвардия» не спешит сдавать свои позиции.
Во-первых, развитие таких трансмиссий также не стоит на месте. Хотя у многих автолюбителей «классическая» АКП ассоциируется с морально устаревшими четырехступенчатыми «автоматами», которые не спешат переключать скорости и не особо заботятся об экономии топлива.
На самом деле такие коробки передач встречаются сейчас только на бюджетных моделях, да и то довольно редко. Подавляющая часть «автоматов» сегодня имеют минимум шесть скоростей и предлагают функцию ручной смены передач.
Более такого, производители активно увеличивают количество ступеней в таких КП, чтобы добиться лучшей экономичности. На автомобилях стоимостью выше среднего все чаще появляются восьми- и даже девятидиапазонные трансмиссии, а некоторые бренды, например Ford, уже завлекают клиентов «автоматами» на 10 (!) ступеней.
Большинство «роботов» не могут справиться с большим крутящим моментом мощных двигателей. Конечно, можно привести пример нескольких суперкаров с роботизированными КП, включая 1000-сильный Bugatti Veyron, но это скорее исключения, подтверждающие правило, тем более, что владельцы спортивных авто не особо беспокоятся о длительности ресурса таких КП.
Также роботизированными трансмиссиями не оснащаются полноценные внедорожники, потому что на сроке службе «роботов» негативно сказываются продолжительные пробуксовки на бездорожье и рывки из-за изменения сцепных свойств при контакте четырех колес с дорогой. Все это по большому счету не очень полезно и для обычных АКП.
Автомат или робот
Разница между «классическим автоматом» и «роботизированной» механикой с каждым годом уменьшается. Если «роботы» сохранят темпы “самосовершенствования”, подтянув надежность и выносливость, то «гидротрансформаторам» придется серьезно потесниться.
Похожие записи
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Роботизированная коробка передач автомобиля — устройство и как работает
Роботизированная коробка передач автомобиля — разновидность полуавтоматических КПП, которая объединяет черты механической коробки и автоматической. Расскажем что такое коробка — робот, как работает и в чем преимущество перед другими типами трансмиссии.
Что это такое
Вместо третьей педали, которую нужно выжать для переключения скоростей с механической коробкой передач, в авто с роботизированной коробкой передач две педали. Роль третьей педали играет целая система сенсоров, передатчиков и исполнительных механизмов, которые при помощи бортового компьютера переключают коробку без участия водителя и сцепления. Компьютер синхронизирует работу деталей коробки, а некоторые электронные системы способны научиться распознавать стиль вождения водителя и предугадывать его действия. У роботизированной КПП ручка переключения скоростей находится там же, где и ручка механической коробки, но вместо Ж-образного переключения, ручка переключается только вперед или назад.Как работает
Работает следующим образом. При переключении ручки передач и нажатии педали газа сенсоры передают информацию в блок управления, который в свою очередь передает сигнал в коробку передач. Сенсоры коробки передач также сообщают в блок информацию о действующей скорости и новом требовании переключения скоростей.Блок управления синхронизирует информацию, полученную от сенсоров, и выбирает оптимальную скорость и время переключения скоростей и обеспечивает слаженность работы механизмов коробки передач. При этом принимается в расчет скорость вращения двигателя, работа кондиционера, показатели спидометра.
Бортовой компьютер роботизированной КПП управляет гидромеханикой, который смыкает или размыкает сцепление. Этот процесс происходит синхронно с действием водителя, переключающего ручку скоростей. Гидромеханический блок использует жидкость из тормозной системы для запуска гидравлического цилиндра, обеспечивающего движение актуатора.В чём преимущество
Электроника реагирует быстрее человека и более точно, поэтому «выжать» сцепление можно без участия водителя. Для парковки автомобиля, обратного хода или нейтрального положения трансмиссии водитель должен предварительно выжать обе педали одновременно, после этого можно выбрать один из трех вариантов.Сцепление нужно только, чтобы машина пришла в движение. Для быстрого переключения скорости на более высокую необходимо убрать ногу с педали газа, чтобы двигатель сбавил обороты для подходящей скорости. Для этого ручка передачи скоростей должна стоять на нужной позиции.
Преселективная роботизированная коробка передач DSG в автомобилях Volkswagen
Специалисты компании Volkswagen создали новую, уникальную коробку переключения скоростей DSG (Direct Shift Gearbox), которая по своим техническим характеристикам намного превосходит существующие образцы.
В настоящее время преселективные роботизированные коробки передач DSG второго поколения устанавливаются на большинство моделей Volkswagen: Golf, Passat B8,Passat СС, Tiguan, Jetta.
Использование этой коробки передач позволяет почувствовать комфорт и удобство при переключении. Данная коробка сочетает в себе все современные технологии трансмиссий различных типов. Переключение скоростей осуществляется вручную, но за весь процесс отвечает электроника и различные автоматизированные механизмы.
Отличительной особенностью работы коробки является то, что во время переключения передач не изменяется поток мощности. Плавность работы такого агрегата по достоинству оценят как любители загородной быстрой езды, так и владельцы автомобилей, передвигающиеся преимущественно в городской черте.
Особенности работы коробки-робота
Коробка передач DSG может эксплуатироваться в двух режимах — спортивном и нормальном.
Спортивный режим. Данный режим предусматривает более длительное раскручивание при переходе на повышенные скорости и быстрый переход на пониженные передачи. Такой режим является предпочтительным при скоростной езде. Имеется функция Tiptronik, которая позволяет производить управление передачами в ручном режиме.
Всем, кто любит спортивный тип езды, можно использовать переключатели-лепестки, смонтированные на руле. Такие лепестки позволяют почувствовать мощь автомобиля и от души насладиться спортивной ездой.
Нормальный режим. Такой режим является привычным для всех автомобилистов и может использоваться при передвижении по городу или для небыстрого, экономного вождения.
Устройство DSG
6-ступенчатая коробка DSG имеет два, независимых друг от друга блока трансмиссий. Благодаря такой конструкции, происходит поочередное сцепление с двигателем, в зависимости от включенной в данный момент передачи. Для управления используется двойное сцепление, которое состоит из пары муфт, которые установлены в едином корпусе.
Одно сцепление отвечает за работу 1, 3, 5 передачи, второе за 2, 4, 6 передачу. Каждый блок оснащен отдельным приводным валом, передающий вращающее действие на колеса. Передача осуществляется с помощью дифференциала.
КПД роботизированных коробок передач
Применение схемы двойного сцепления в коробках DSG, при сравнении с АКП, имеющей гидротрансформатор, позволяет в значительной мере увеличить КПД. Интеллектуальная система коробки в сочетании с небольшой массой, позволяет значительно понизить расход топлива. Оценить все положительные качества данной коробки можно на автомобилях Passat CC, Golf GTI, Passat Variant.
Интеллектуальный блок управления
Коробка снабжена встроенным блоком, который проводит анализ оборотов двигателя, скорости движения, нажим на педаль газа.
На основе полученных данных автоматически выбирается необходимая передача или момент перехода на другую передачу. Это обеспечивает плавность движения и снижает нагрузку на двигатель.
что это такое, отличия от акпп, плюсы и минусы
Существует 4 вида коробок переключения передач (КПП). Доля автомобилей с роботизированной коробкой передач, классическим автоматом и вариатором на дорогах постоянно растет, ведь все больше автолюбителей отказываются от ручной механики. Коробки передач, работающие без участия человека, постоянно совершенствуются. Их качество, скорость реакции на дорожные события, плавность действий становятся лучше, а любая поездка комфортнее.
С роботизированной коробкой передач намного удобнее.Что такое роботизированная коробка передач
Роботизированная коробка передач (РКПП, или робот) — это часть трансмиссии транспортного средства. Иногда ее путают с автоматической коробкой, но они отличны друг от друга. РКПП состоит из механической КПП, автоматических переключателей электрического или гидравлического типа (актуаторы) и блока управления этими переключателями (ЭБУ). То есть сама коробка — механика, автоматическим является только управление ее работой.
Для водителя РКПП выглядит почти как АКПП. Под рукой нет рычага переключения скоростей (на некоторых моделях вместо него ручка селектора), а под ногами — педали сцепления. Во время езды передачи переключаются в автоматическом режиме.
Как она работает
Механической коробкой передач, снабженной диском сцепления с маховиком двигателя, управляет робот. Алгоритм, заложенный разработчиками в ЭБУ, реагирует на показания датчиков, подавая команды сервоприводам.
Это выглядит так:
- водитель давит на педаль газа;
- повышаются обороты двигателя, автомобиль ускоряется;
- по достижении заложенных в программу значений срабатывают актуаторы сцепления и вилки переключения;
- происходит включение повышенной передачи.
Если водитель продолжает ускорение, то на следующих запрограммированных оборотах двигателя и скорости движения ЭБУ снова подает сигнал и актуаторы опять переключают передачу.
По тому же принципу во время торможения передачи переключаются с высоких на пониженные. Высокопродуктивные процессоры позволяют создавать сложные программы, имитирующие поведение человека в разных ситуациях. И чем они сложнее, тем динамичнее и комфортнее езда.
Особенности РКПП
Работа роботизированной коробки передач.Приводы переключения скоростей на роботах оснащаются либо электрическими моторчиками, либо поршневой гидравлической системой. Но выполняют они одну и ту же задачу — передвигают синхронизаторы шестеренок вторичного вала и выжимают сцепление.
Главное отличие в том, что гидравлика работает быстрее и мягче. Но она более дорогая в производстве, поэтому такими РКПП снабжены в основном автомобили высокого класса. Самой востребованной является DSG от немецкого концерна Volkswagen.
ЭБУ для коробок делают и отдельным, и совмещенным с блоком управления ДВС. Последний вариант наиболее целесообразен, если алгоритм управления робота учитывает показания тех же систем, что и управление двигателем, например ABS или ESP.
Устройство сцепления в роботе
Роботизированные коробки по методу взаимодействия с двигателем бывают двух типов:
- однодисковые;
- двухдисковые (используют два сцепления, включаемые попеременно).
Однодисковая коробка ничем не отличается от механической. В ней есть первичный и вторичный валы.
Первичный соединен с диском сцепления. Вторичный вал передает крутящий момент непосредственно на колеса. Оба вала взаимодействуют посредством шестерней разного диаметра. Переключение происходит в тот момент, когда выбранная для нужной передачи шестерня на вторичном валу блокируется. В РКПП это делают электрические манипуляторы, получающие сигнал от ЭБУ. Гидравлические приводы-манипуляторы на однодисковых коробках используются крайне редко.
Двухдисковые имеют два ведущих первичных вала, каждый из которых соединен со своим диском сцепления. Один вал отвечает за четные передачи, а второй — за нечетные и заднюю. Такое техническое решение позволило делать включение выбранной передачи более плавным. Синхронизаторы приводов работают попеременно. В момент перехода на одном валу с 1 на 2 передачу ЭБУ уже дает сигнал на подготовку к включению 3. Поэтому их еще называют преселективными, т. е. с предварительным выбором. В результате сам процесс переключения ускоряется до 0,2 и менее секунд.
youtube.com/embed/BgZaz5b4JRk?feature=oembed&wmode=opaque» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Некоторые производители так настраивают работу актуаторов и алгоритмы, что робот функционирует не хуже человека.
Режимы работы
Управление водителем коробкой передач сводится к выбору режима селектором:
- Нейтраль обозначается «N». В этом режиме двигатель работает, но крутящий момент на колеса не передается. Включать перед началом движения, после остановки, при длительной стоянке.
- Движение вперед обозначается «А/М», «Е/М» или «D». Включив этот режим, отпускают педаль тормоза и нажимают педаль газа. Машина движется вперед, автоматически переключая скорости в зависимости от ускорения или торможения.
- Ручное управление обозначается «М». Автомобиль движется вперед, водитель самостоятельно переключает скорости, нажимая подрулевые лепестки или селектор в положения «+» или «-». При этом переключение происходит только на одну ступень.
- Движение задним ходом обозначается «R». Выбрав этот режим, можно ехать назад.
- На некоторых РКПП возможно наличие режимов «зимний» и «спортивный».
Есть также и свои особенности при езде, к которым водитель должен привыкнуть, иначе будет попадать в неприятные ситуации.
Это следующее:
- Езда в автоматическом режиме подразумевает дороги с хорошим твердым покрытием. Заехав летом в грязь, а зимой в рыхлый глубокий снег, рискуете забуксовать. Алгоритм станет выдавать ошибочные команды, и передачи будут включаться некорректно. Такие ситуации повышают износ деталей и механизмов, что увеличивает риск поломок.
- Педаль газа нужно нажимать плавно, ни в коем случае нельзя ее давить в пол. Нужно следить за оборотами двигателя, фиксируя моменты переключения скоростей, и избегать перегазовки.
- Если на авто отсутствует функция помощи при трогании в подъем, нужно поступать так же, как при пользовании ручной КПП, — использовать стояночный тормоз для предотвращения отката назад.
- При длительных остановках (больше 60 секунд) на запрещающий сигнал светофора или в пробке нужно переключать селектор в положение «нейтраль».
- Для длительной остановки на парковке сначала переводят селектор в «нейтраль», затем включают стояночный тормоз, после чего отпускают педаль тормоза и глушат двигатель.
- Каждый производитель указывает, с какой частотой по пробегу нужно проводить перекалибровку ЭБУ (ее еще называют инициализацией или обучением). Это нужно делать из-за износа диска сцепления. Следует проводить процедуру каждые 10000-15000 км.
- Зимой, при низких температурах воздуха, прогрев коробки занимает ровно столько времени, сколько его потребуется на прогрев двигателя.
Основные отличия РКПП от АКПП
Оба вида трансмиссии выполняют одну функцию — освобождают водителя от необходимости переключения передач во время движения автомобиля.
Но из-за того, что конструктивно это разные механизмы, в эксплуатации и обслуживании они отличаются друг от друга:
- В АКПП частью рабочего механизма является жидкость ATF. В РКПП для смазки механических узлов присутствует масло, но его в несколько раз меньше по объему. Кроме того, его надо гораздо реже менять.
- Автомобиль с роботом динамичнее в движении и потребляет меньше топлива. Потому что масса и габариты автомата превосходят те же показатели у робота, а переключения скоростей в РКПП происходят быстрее.
- На машине с АКПП ездить гораздо комфортнее, потому что передачи переключаются плавно, а роботизированная коробка не может так гасить рывки.
- Износ фрикционов идет медленнее, чем стирание диска сцепления.
- На роботизированной коробке можно переключиться на ручное управление. Оно не полное, потому что переключение производится только на одно положение и нельзя перейти, например, со 2 сразу на 4. Но автомат не дает водителю и такой возможности.
Плюсы и минусы
Схема работы системы SensoDrive.Широкое распространение роботизированные коробки передач получили благодаря своим достоинствам. Однако у них есть и недостатки, о которых лучше знать до покупки автомобиля, чтобы быть к ним готовым.
Преимущества:
- Время разгона до 100 км/ч при аналогичности других параметров почти не отличается от времени разгона на ручной коробке.
- Расход топлива сопоставим с расходом на автомобилях с РКПП и до 30% ниже, чем на моделях с автоматическими коробками.
- Диск сцепления изнашивается медленнее, чем при ручном переключении.
- Робот работает аккуратнее человека, поэтому валы и шестерни коробки будут изнашиваться меньше, а служить дольше, чем в ручной механике.
- Стоимость ремонта и обслуживания в среднем ниже, чем у АКПП.
Отрицательные моменты:
- Во время движения при включении скоростей могут ощущаться рывки и дерганье.
- Алгоритм, заложенный в ЭБУ, не обладает реакцией человека на ситуации, возникающие во время движения. Поэтому могут возникать ошибки, когда необходимо экстренно разогнаться или затормозить.
- Роботу для принятия решения нужны более «длинные» передачи, а для сохранения динамики при этом необходим более мощный двигатель.
- Если нет системы помощи при подъеме, то во время начала движения «в гору» возможен откат автомобиля назад.
- Невозможность «прошивки» блока управления. Алгоритм переключения передач — это разработка производителя, которая корректировке не подлежит.
- Движение в пробках плохо сказывается на узлах и механизмах коробки, приводя их к раннему разрушению.
https://youtube.com/watch?v=f3D8P4MmIgo
Признаки неисправности
Как и любой механизм, роботизированная коробка подвержена износу во время работы и может ломаться. Неисправности делятся на механические и блока управления. Каждая имеет свои проявления.
Признаки механических поломок:
- пробуксовка во время движения по ровному твердому дорожному полотну говорит об износе диска сцепления;
- если не переключаются передачи, это может говорить о поломке актуаторов;
- посторонние шумы во время движения могут быть вызваны целым рядом причин, и для выявления поломки следует провести диагностику узлов и механизмов;
- усиление рывков во время переключения передач может происходить из-за износа и разрушения зубчатых соединений на валах коробки, износа вилок выбора шестеренок;
- загоревшаяся лампа Check Engine на панели приборов говорит о необходимости компьютерной диагностики.
Признаки ошибок в ЭБУ:
- сбивается режим работы робота, переключения передач происходят некорректно и не вовремя;
- рывки во время включения передач становятся сильнее;
- при выборе селектором положения движения вперед или назад машина не едет;
- загорается контрольная лампочка Check Engine.
Чтобы разобраться, из-за чего возникли неприятности, нужно провести правильную диагностику с применением специального оборудования.
Актуальность коробки в России
Автомобили с коробками-роботами у наших автолюбителей пользуются хорошим спросом. Опросы показывают, что доля россиян, готовых купить авто с РКПП, колеблется в пределах 15-20%. При этом надо отметить, что доля желающих пользоваться классическим автоматом все же в 2 раза выше.
В крупных городах платежеспособные слои населения выбирают АКПП из-за более комфортной езды и гораздо меньших проблем, связанных с эксплуатацией в условиях частых пробок на дорогах. Притом цены на автомат и хороший преселективный агрегат находятся на одном уровне. Но, если цена на горючее будет продолжать расти, многие предпочтут авто с РКПП (как более дешевый в эксплуатации), особенно когда поездки не ограничиваются маршрутом работа-дом.
Описание принципов работы роботизированной КПП DCT Хендай
Рассмотрим DCT автомобилей Hyundai: принцип работы, характерные особенности, плюсы и минусы.
Роботизированная трансмиссия — новшество из мира спортивных автокаров
Роботизированная КП (DCT Хендай) — преселиктивная коробка передач, попавшая на любительский рынок в модифицированном виде относительно недавно из автоспорта, оснащенная прямым включением и двумя сцеплениями, на которые возложены разные функции:
- Контроль над нечетными передачами.
- Контроль над четными передачами.
Сравнительно быстрый и, что немаловажно, плавный разгон, в процессе которого скорости переключаются в доли секунды — главные особенности роботизированной трансмиссии автомобиля Hyundai. Кроме этого, сочетание комфортного управления транспортным средством, которое дает автомат, с неоспоримым экономичным режимом и динамикой от МКП — так же отличительная характеристика роботизированной КП, относящиеся к достоинствам этой трансмиссии.
К преимуществам так же можно отнести следующее:
- дешевле автоматической КП;
- небольшая масса робота;
- некоторые модели Hyundai оснащены подрулевыми лепестками — альтернатива традиционному рычагу переключения скоростей, что позволяет быстро поставить необходимую передачу, а значит предать динамичности транспортному средству.
Корейские кроссоверы премиум класса — например, Hyundai Tucson (2016 года), при желании автолюбителя могут комплектоваться 7-ступенчатой роботизированной коробкой с двойным сцеплением и подрулевыми лепестками (несмотря на название, они расположены сразу за рулем). Данная система КПП идет исключительно с силовой установкой мощностью в 175 лошадиных сил.
Категорически противопоказаны пробуксовки, страдает плавность переключения скоростей, при даже кратковременной остановке необходимо переходить в нейтральное положение. Это очевидные недостатки роботизированной коробки. К ним же следует присовокупить дороговизну устройства, как при приобретении, так и в последующем обслуживании и ремонте.
Идеальной коробки передач не существует. Поэтому, выбирая, необходимо расставлять приоритеты. То есть, что предпочтительней: динамика, стоимость, экономичность или комфорт. Определившись, проще осуществить правильный выбор относительно трансмиссии.
границ | Компактные редукторы для современной робототехники: обзор
Введение
Промышленные роботы составляют основу нескольких крупных традиционных производств, включая автомобилестроение и электронику. Сегодня многие регионы мира видят реальную возможность возродить обрабатывающую промышленность, внедряя роботов на малых и средних предприятиях (МСП) и в вспомогательные услуги, как правило, в здравоохранении (SPARC, 2015).
Для крупномасштабных промышленных сред с высокой степенью автоматизации преимущество роботизированных решений по сравнению с людьми-операторами в основном заключается в (i) большей доступности и (ii) способности перемещать — обычно большие — полезные грузы с исключительной точностью позиционирования и с высокой скоростью.Эти аспекты имеют решающее значение при разработке и выборе подходящих технологий для промышленного робота, особенно для первичных двигателей и трансмиссий, обеспечивающих движение этих устройств.
Применения в производстве и персональном обслуживании малых и средних предприятий бросают вызов этой традиционной парадигме робототехники. Ключ к успеху в этих новых приложениях лежит в очень высокой степени гибкости, необходимой для обеспечения безопасного и эффективного прямого сотрудничества с людьми для достижения общих целей. Эта цель требует, чтобы роботы сначала развили способность безопасно взаимодействовать с людьми в дисциплине, обычно называемой pHRI — физическое взаимодействие человека и робота.
pHRI оказывает широкое влияние на срабатывание роботов. Опыт, накопленный за последние десятилетия, в основном в области робототехники в сфере здравоохранения, показывает, что для безопасного и эффективного взаимодействия с людьми роботы должны в основном двигаться, как люди, и, следовательно, жертвовать некоторыми из своих традиционных преимуществ с точки зрения полезной нагрузки, точности и скорости.Эта ситуация привела к обширным исследованиям в последние годы, охватывающим оптимальный выбор первичных двигателей и передач для срабатывания HRI (Zinn et al., 2004; Ham et al., 2009; Iqbal et al., 2011; Veale and Xie, 2016). ; Verstraten et al., 2016; Groothuis et al., 2018; Saerens et al., 2019).
Эти работы относятся к более широкой области исследований, изучающих оптимизацию соединения между первичным двигателем и коробкой передач для данной задачи в автоматических машинах. Краткий обзор основных разработок в этой области дает полезные сведения, позволяющие понять влияние коробки передач на общую производительность системы.Паш и Серинг (1983) определили важность инерции при срабатывании и предложили использовать передаточное число для согласования инерции двигателя и отраженной нагрузки в качестве средства минимизации потребления энергии для чисто инерционной нагрузки. Чен и Цай (1993) применили эту идею к области робототехники и определили результирующую способность к ускорению конечного эффектора как определяющий параметр. Ван де Стрете и др. (1998) разделили характеристики двигателя и нагрузки, чтобы распространить этот подход на общую нагрузку, и предоставили метод определения подходящих передаточных чисел для дискретного набора двигателей и коробок передач.Roos et al. (2006) изучали выбор оптимального привода для трансмиссии электромобилей, добавляя вклад КПД коробки передач. Giberti et al. (2010) подтверждают инерцию ротора, передаточное отношение, эффективность коробки передач и инерцию коробки передач как наиболее важные параметры для выбора срабатывания и предлагают графический метод оптимизации этого выбора для динамической задачи. Петтерссон и Олвандер (2009) снова сосредоточились на промышленных роботах и представили метод, моделирующий коробку передач с упором на массу, инерцию и трение.Резазаде и Херст (2014) используют очень точную модель двигателя и включают фундаментальный критерий выбора полосы пропускания в дополнение к минимизации энергии. Дрессчер и др. (2016) исследуют влияние трения на планетарный редуктор, в котором кулоновское трение является доминирующим механизмом трения, и демонстрируют, как КПД редуктора обычно становится преобладающим над КПД двигателя при высоких передаточных числах.
По сравнению с исходными моделями коробок передач, использовавшихся в этих работах, где коробки передач моделировались как идеальные передаточные числа, сложность моделей постепенно возрастала.Тем не менее, необходимо сделать важные — и нереалистичные — упрощения, чтобы добиться хорошей практической применимости этих методов. Таким образом, не учитываются важные эффекты, такие как жесткость на кручение и потерянное движение, в то время как модели инерции и эффективности коробки передач сильно упрощены. Это оправданный подход для множества приложений, где упрощенные методы могут помочь инженерам выбрать подходящие трансмиссии. Однако в HRI эти свойства слишком важны для пригодности коробки передач, и их нельзя так сильно упростить.
Следовательно, необходим другой подход, чтобы предоставить полезные рекомендации по выбору коробки передач в HRI, избегая чрезмерной сложности задач оптимизации в этой области. Предоставление подробных сведений об эксплуатационных свойствах и характеристиках различных технологий редукторов для обоснованного выбора — еще один вариант, следуя традициям таких работ, как Schempf and Yoerger (1993) или Rosenbauer (1995). Следуя этому подходу, Siciliano et al. (2010), Ли (2014), Шейнман и др.(2016) и Pham and Ahn (2018) предоставляют интересные обзоры высокоточных редукторов для современной робототехники. Однако технологии не анализируются достаточно подробно, чтобы получить хорошее представление о сложных механизмах, в которых они влияют на выполнение роботизированной задачи.
Основная цель этого обзора, следовательно, состоит в том, чтобы дополнить эти работы подробным анализом основных принципов, сильных сторон и ограничений доступных технологий. Помимо возможности прогнозирования будущего технологий редукторов в робототехнике, этот подход может помочь неспециалистам по редукторам определить подходящие технологии компактных редукторов для многофакторных требований новых робототехнических приложений (López-García et al., 2018). Для специалистов по коробкам передач из других областей этот анализ может помочь им получить полезную информацию о конкретных потребностях приложений HRI.
Это исследование начинается с краткого описания основных требований к будущим роботизированным трансмиссиям, чтобы затем представить структуру оценки, предназначенную для оценки пригодности и потенциала конкретной технологии коробок передач для этой области. Эта структура включает сильную перспективу pHRI и новый параметр — Latent Power Ratio — для оценки эффективности, присущей определенной топологии редуктора.Эта новая структура используется в первую очередь для обзора традиционных технологий редукторов, используемых в промышленных роботах, и новых технологий передачи, которые в настоящее время находятся в процессе выхода на рынок. Наконец, в конце документа приводится краткое изложение выводов, сделанных в результате этого обзора, вместе с нашими выводами и рекомендациями.
Система оценки роботизированных трансмиссий с расширенными возможностями HRI
Контроль
Управление роботизированными устройствами — очень широкая и сложная тема, которая является предметом обширной исследовательской литературы. В этом разделе мы ограничимся введением основных принципов линейности и отраженной инерции, которые являются основными для понимания влияния редуктора на управление.
Хотя в целом скорость и точность являются противоречивыми требованиями, обычные роботизированные устройства превосходны в достижении высокой точности позиционирования на высокой скорости благодаря использованию жестких приводов с очень линейным поведением (Cetinkunt, 1991). Включение роботизированной трансмиссии влияет на сложность управления в основном двумя способами: вносит дополнительную нелинейность и сильно влияет на отраженную инерцию.
Нелинейности, вызванные включением трансмиссии, принимают в основном форму люфта и / или трения и уменьшают полосу пропускания системы, создавая важные проблемы управления (Schempf, 1990). Заявление о зубчатых колесах приводит к люфту, трению и (нежелательному) соответствию, что затрудняет точное управление. (Hunter et al., 1991) сегодня так же актуально, как и почти 30 лет назад. Для некоторых технологий большие кинематические ошибки передачи и, в частности, нелинейное трение также могут вызывать значительные нелинейности.
Коробки передач также сильно влияют на отраженную инерцию системы. В роботизированном устройстве инерция первичного двигателя обычно на несколько порядков меньше, чем у полезной нагрузки, что делает систему нестабильной и создает серьезные проблемы с управлением. Добавление трансмиссии сильно снижает инерцию полезной нагрузки, которую видит первичный двигатель и которая отражается на него, на коэффициент, равный квадрату передаточного отношения трансмиссии. Таким образом, тщательный выбор трансмиссии может привести к более сбалансированной инерции на обеих сторонах трансмиссии, способствуя минимизации энергопотребления и созданию более надежной, стабильной и точной системы (Pasch and Seering, 1983).
Отраженная инерция особенно важна, когда рабочие органы претерпевают быстрые и частые изменения скорости и / или крутящего момента, что очень часто встречается в задачах автоматизации и робототехники. В этих случаях вводится перспектива пропускной способности, чтобы подтвердить способность системы отслеживать эти изменения (Sensinger, 2010; Rezazadeh and Hurst, 2014). Это лежит в основе принципа управляемости задним ходом, способности системы демонстрировать низкий механический импеданс, когда она приводится в действие с естественной выходной мощности (с обратным приводом).Это особенно важно при частом двунаправленном обмене энергией между роботом и его пользователем, что типично для реабилитационных устройств или экзоскелетов. Как демонстрируют Ван и Ким (2015), управляемость коробки передач задним ходом включает в себя комбинированный эффект отраженной инерции, отраженного демпфирования и кулоновского трения, и поэтому она тесно связана с эффективностью коробки передач.
Это подчеркивает важность для оценки управляющего воздействия определенной технологии коробки передач как возможностей передаточного числа, так и нелинейностей (люфт, трение), которые она вносит.
Безопасность
Промышленные роботы традиционно размещаются за забором в хорошо структурированной среде, где они могут воспользоваться преимуществами своих быстрых и точных роботизированных движений, не подвергая опасности целостность человека-оператора.
Безопасный pHRI, включающий способность безопасно перемещаться в неструктурированной / неизвестной среде, обязательно тесно связан с управляемостью. Текущая стратегия, используемая робототехниками для достижения этой цели, состоит из формирования механического импеданса (Calanca et al., 2015), то есть позволяя контроллеру соответствия управлять сложным динамическим соотношением между положением / скоростью робота и внешними силами (Hogan, 1984).
Принцип прост: чтобы обеспечить хорошую адаптацию к неопределенной среде, а также целостность человека-оператора / пользователя во время взаимодействия с роботизированным устройством, последний должен двигаться согласованно, как человек (Karayiannidis et al. др., 2015). Это подчеркивает важность импеданса и внутреннего соответствия (De Santis et al., 2008) и объясняет появление нового типа внутренне гибких приводов для pHRI (Ham et al., 2009), где требуется высокая степень соответствия (Haddadin and Croft, 2016).
С точки зрения управления, инерция полезной нагрузки, отраженная к первичному двигателю, уменьшается на коэффициент, соответствующий квадрату передаточного числа. Точно так же обычно небольшая инерция ротора первичного двигателя усиливается тем же фактором при отражении в сторону полезной нагрузки, который должен быть добавлен к инерции, возникающей в результате движения роботизированного устройства и груза по соображениям безопасности, а также из соображений безопасности. ограничение рабочих скоростей.
Хотя в большинстве актуаторов pHRI сегодня используются редукторы с высоким передаточным числом, некоторые известные робототехники Seok et al. (2014), Сенсингер и др. (2011) видят большой потенциал робототехники в использовании двигателей с большим крутящим моментом (бегунков), требующих очень малых передаточных чисел. Новые производители робототехнических решений, такие как Genesis Robotics из Канады или Halodi Robotics AS из Норвегии, предлагают приводы для робототехники, основанные на этих принципах. По их мнению, увеличение инерции двигателя и уменьшение передаточного числа должно приводить к снижению инерции двигателя, отражаемой на рабочий орган, что обеспечивает более высокие рабочие скорости и / или полезную нагрузку без ущерба для целостности оператора.Низкие передаточные числа также имеют дополнительное преимущество в пропускной способности: они имеют меньшее трение и люфт, уменьшая вклад нелинейностей от коробки передач. С другой стороны, умеренное передаточное число не может компенсировать нелинейные условия сцепления — обычно зубчатый крутящий момент (Siciliano et al., 2010).
Более пристальный взгляд на спецификации этих новых двигателей вызывает некоторые вопросы с точки зрения достижимой эффективности, веса или компактности, а также последствий для оборудования, возникающих в результате чрезмерной тяги к высоким электрическим токам (HALODI Robotics, 2018; GENESIS Robotics, 2020).
Подводя итог, нет полного согласия о том, как лучше всего подойти к безопасному срабатыванию для робототехники. Тем не менее, сильные естественные связи между безопасностью и управляемостью столь же очевидны, как и ключевое значение передаточного числа трансмиссии и ее нелинейностей.
Вес и компактность
Облегченная конструкция имеет первостепенное значение для обеспечения совместимости безопасности и хорошей производительности в новых приложениях робототехники (Albu-Schäffer et al., 2008). Новейшие коллаборативные роботы (коботы), такие как облегченный робот KUKA, разработанный в сотрудничестве с Институтом робототехники и мехатроники Немецкого аэрокосмического центра (DLR), живут по этому принципу и, следовательно, сильно отличаются от тяжелых и громоздких традиционных промышленных роботов.Благодаря более низкой инерции, легкие коботы обеспечивают более высокую производительность — более высокие скорости — без ущерба для безопасности пользователя.
Этот выгодный аспект облегченной конструкции имеет и другие преимущества. Для мобильных робототехнических систем меньший вес означает большую автономность. В носимых вспомогательных роботизированных устройствах, включая протезы и экзоскелеты, легкий вес также является ключевым аспектом для повышения комфорта (Toxiri et al., 2019).
Высокая компактность — еще одна характеристика, присущая этим новым роботизированным устройствам: от коботов до вспомогательных устройств, компактность дает преимущества в маневренности и удобстве взаимодействия.
В роботизированных приложениях, предполагающих тесное сотрудничество с людьми или предоставление мобильных услуг, позиции по своей сути весьма неопределенны. Легкие и компактные конструкции особенно выгодны (Loughlin et al., 2007) для этих применений с двумя последствиями: первичные двигатели и трансмиссии — обычно самые тяжелые элементы в роботизированном устройстве — должны быть легкими и компактными, но легкие конструкции имеют тенденцию требовать меньший крутящий момент.
В отличие от веса коробки передач, определение подходящего критерия для оценки вклада коробки передач в компактность системы является более сложной задачей.Физический объем определенно играет роль, но наш опыт показывает, что фактическая форма коробки передач имеет тенденцию иметь большее влияние. Еще один аспект, о котором стоит упомянуть, — это наличие в некоторых конфигурациях редукторов свободного пространства для размещения материала или движущихся частей, таких как электродвигатели или выходные подшипники, также могут представлять особый интерес. Поэтому мы решили включить в нашу схему оценки приблизительную форму (диаметр × длина) выбранной коробки передач, в то время как наличие дополнительного места можно напрямую оценить с помощью предоставленных цифр для каждой из конфигураций.
Эффективность и виртуальная мощность
КПД
В таких областях, как автомобильные или ветряные турбины, эффективность редукторов долгое время находилась в центре внимания. В робототехнике, с другой стороны, эффективность до недавнего времени не становилась ключевым параметром при выборе подходящей коробки передач (Arigoni et al., 2010; Dresscher et al., 2016).
Более высокая эффективность — более низкие потери — позволяют снизить потребление энергии и прямо положительно влияют как на эксплуатационные расходы, так и на экологический след машины или устройства.Для мобильных и носимых роботизированных устройств повышение эффективности также помогает снизить вес системы — требуются батареи меньшего размера — и в конечном итоге приводит к большей автономности и лучшему удобству использования (Kashiri et al., 2018).
В коробках передач есть еще одно дополнительное преимущество в снижении потерь: большинство механических трансмиссий, используемых в робототехнике, имеют замкнутую форму и используют какой-либо контакт зубьев для передачи крутящего момента и движения между первичным двигателем и рабочим органом. Благодаря этому кинематическое соотношение между входной ω In и выходной скоростями ω Out заблокировано количеством зубцов и определяет его передаточное число i K . В коробке передач без потерь передаточное отношение i τ между выходным и входным крутящими моментами τ точно соответствует обратному кинематическому передаточному отношению с противоположным знаком. Но в реальной коробке передач наличие потерь изменяет это равенство, и поскольку кинематическое передаточное число блокируется числом зубьев, абсолютное значение передаточного числа крутящего момента должно уменьшаться пропорционально потерям:
ωInωOut = iK = — η iτ = -ητOutτIn; где η — КПД системы.Следовательно, высокие потери в коробке передач означают, что меньший крутящий момент доступен для рабочего органа и требуются большие передаточные числа для достижения такого же усиления крутящего момента.
Коробки передач подвержены нескольким видам потерь. Чтобы классифицировать их, мы принимаем критерии, предложенные Talbot и Kahraman (2014), и разделяем их на зависимые от нагрузки (механические) потери мощности, возникающие из-за скольжения и качения контактных поверхностей, как в контактах шестерен, так и в подшипниках, и нагрузки -независимые (спиновые) потери мощности — возникают из-за взаимодействия вращающихся компонентов с воздухом, маслом или их смесью.
Виртуальная сила
Термин виртуальная мощность, насколько известно авторам, был первоначально введен Ченом и Анхелесом (2006), но это явление, объясняющее аномально высокие потери, присутствующие в некоторых планетных топологиях, долгое время было известно под разными названиями, включая Blindleistung (Wolf, 1958; Mueller, 1998) и скрытая или бесполезная мощность (Macmillan and Davies, 1965; Yu and Beachley, 1985; Pennestri and Freudenstein, 1993; Del Castillo, 2002).
Из-за своего принципа действия коробка передач всегда включает в себя высокоскоростную сторону с низким крутящим моментом и сторону с высоким крутящим моментом и низкой скоростью. Следовательно, его внутренние зубчатые зацепления обычно подвержены либо высокому крутящему моменту и низкой скорости, либо условиям высокой скорости и низкого крутящего момента. Однако в некоторых коробках передач из-за их особой топологии некоторые зацепления шестерен могут иметь одновременно высокую скорость и высокий крутящий момент. Зубчатые зацепления могут легко достичь КПД выше 98%, но поскольку генерируемые потери приблизительно пропорциональны произведению относительной скорости двух зубчатых элементов и крутящего момента, передаваемого через зацепление (Niemann et al., 1975), на этих высоконагруженных сетках появляются неожиданно большие потери. Виртуальная мощность обеспечивает основу для оценки вклада этого явления, которое в дальнейшем мы будем называть топологической эффективностью коробки передач.
Некоторые из вышеупомянутых авторов предлагают методы для оценки топологической эффективности данной конфигурации и определения ее влияния на общую эффективность системы. В рамках Chen and Angeles (2006) виртуальная мощность определяется как мощность, измеренная в движущейся — неинерциальной — системе отсчета.Скрытая мощность , представленная Ю и Бичли (1985), соответствует виртуальной мощности, когда опорная рамка является несущим элементом коробки передач, а виртуальная передаточная мощность — это соотношение между виртуальной мощностью и мощностью, генерируемой внешним крутящим моментом. применяется по ссылке. Используя эти элементы, мы определяем Latent Power Ratio топологии коробки передач как отношение суммы скрытых мощностей во всех зацеплениях к мощности, потребляемой коробкой передач.Таким образом, большой коэффициент скрытой мощности соответствует низкой топологической эффективности и указывает на сильную тенденцию к возникновению больших потерь за счет зацепления.
Чтобы облегчить понимание практического влияния на общую эффективность топологической эффективности, характеризующейся скрытым коэффициентом мощности, данной конфигурации редуктора, мы используем на этом этапе уравнения, предложенные Макмилланом и Дэвисом (1965) для расчета упрощенный пример.
Полная коробка передач робототехники обычно включает в себя несколько зацепляющих контактов, каждый из которых имеет разные рабочие условия и параметры, что приводит к различной эффективности зацепления. Эти КПД очень высоки в оптимизированных зубчатых зацеплениях — часто выше 99% — и позволяют упростить наши расчеты, учитывая общую уникальную эффективность зацепления η м = 99% во всех зацепляющих контактах в нашем редукторе.
Во-первых, эталонный редуктор, идеальный с точки зрения топологической эффективности, имел бы только одно зацепление и коэффициент скрытой мощности L = 1. Таким образом, потери мощности внутри этого эталонного редуктора можно легко рассчитать как функцию входной мощности. как:
Таким образом, общая эффективность зацепления всего редуктора соответствует эффективности одиночного зацепляющего контакта:
ηsys, идеально = PIN-PLossPIN = ηm = 99%;Неидеальный редуктор с таким же типовым η m во всех его зацеплениях и со скрытым коэффициентом мощности L, характеризующим его топологический КПД, указывает на то, что общие потери в редукторе можно приблизительно оценить следующим образом:
Ploss, L≈ PIN * L * (1-ηm)И общая эффективность зацепления всей коробки передач теперь составляет:
ηsys, L = PIN-PLoss, LPIN≈L * ηm + (1-L)Что для η м = 99% и для значения L = 50 дает:
Этот результат следует частично релятивизировать, поскольку накопленные потери в первых зацеплениях, задействованных вдоль различных внутренних потоков мощности в коробке передач, делают меньшую виртуальную мощность, предсказываемую этими уравнениями, которая будет протекать через последующие зацепления.Результатом этого является то, что КПД обычно будет падать немного медленнее с коэффициентом скрытой мощности, а более реалистичное значение для предыдущего расчета обычно будет между 55 и 60%.
Чтобы частично компенсировать это большое влияние топологической эффективности на общую эффективность, конфигурации с большим скрытым коэффициентом мощности требуют чрезвычайно высокой эффективности зацепления: для достижения эффективности системы> 70% системе с L = 100 требуется средняя эффективность зацепления. выше 99.5%.
Поэтому в нашем дальнейшем анализе мы сосредоточимся только на оценке вклада топологической эффективности в эффективность коробки передач. Это позволяет нам использовать упрощенный метод для расчета коэффициента скрытой мощности, который, в первую очередь, не учитывает влияние на потери, вызванные уменьшением крутящего момента. Соответствующие расчеты, использованные для определения коэффициента скрытой мощности различных конфигураций редукторов, проанализированных в этой работе, включены в Приложение I.
Подводя итог, чтобы охарактеризовать важный эффект КПД коробки передач, мы оценим порядок величины трех параметров: (i) потери, зависящие от нагрузки, (ii) пусковой момент без нагрузки и (iii) коэффициент скрытой мощности.Хотя на него дополнительно влияет статическое трение, а не только кулоновское и вязкое трение, мы выбрали пусковой крутящий момент без нагрузки (относительно номинального крутящего момента) как практический способ характеристики потерь, не зависящих от нагрузки. Наши обмены с производителями редукторов показывают, что это обычная практика, она не зависит от входной мощности и легко доступна в технических данных производителя.
Производительность
По сравнению со специальными машинами и машинами для автоматической сборки промышленные роботы не могут достичь тех же стандартов точности и скорости.Оба аспекта пришлось скомпрометировать, чтобы обеспечить большую степень гибкости и мобильности, а также рабочего пространства (Rosenbauer, 1995). С этой точки зрения HRI — это всего лишь еще один шаг в том же направлении: чтобы соответствовать дальнейшим потребностям гибкости и мобильности в неструктурированной среде, необходимы дополнительные компромиссы с точки зрения точности и скорости. Этот переход отражен на рисунке 1.
Рисунок 1 . Графическое описание перехода основных задач задач от машин через промышленных роботов и коботов к людям-операторам.
Точность и повторяемость
Множество аспектов редуктора вносят вклад в общую точность полного роботизированного устройства. Эти аспекты долгое время находились в центре внимания традиционной робототехники и сегодня хорошо изучены, так как работы, подобные работам Майра (1989), Шемпфа и Йоргера (1993) или Розенбауэра (1995), содержат очень хорошие ссылки для понимания этих сложных влияний. Эти исследования указывают на особо важную роль, которую играют потерянный ход и жесткость на кручение.
Lost Motion — это дальнейшее развитие принципа люфта, который описывает полное вращательное смещение, создаваемое приложением ± 3% от номинального входного крутящего момента.
Жесткость на кручение характеризует податливость на кручение всех элементов коробки передач, задействованных во всем потоке сил, под действием внешнего крутящего момента. Это достигается путем блокировки входа редуктора и постепенного увеличения крутящего момента, прилагаемого на выходе, при этом регистрируются изменения жесткости на кручение, приводящие к отклонениям от идеально линейного поведения.
По своей природе точные — малые потери хода и линейная высокая жесткость на кручение — редукторы упрощают задачу управления и обеспечивают высокую точность, идеально подходят для управления положением, в то время как менее точные редукторы создают более серьезные проблемы для управления положением и могут использоваться для более гибкого срабатывания. . В технологиях редукторов, где скорость оказывает сильное влияние на потери или с особенно нелинейным трением, также необходимо учитывать вклад этих элементов в точность.
Чтобы охарактеризовать возможности точности, наша конструкция включает потерю движения и жесткость на кручение, а также субъективную оценку изменения эффективности, вызванного изменениями скорости / крутящего момента.
Скорость и полезная нагрузка
Промышленные роботы могут обрабатывать большие полезные нагрузки за счет большой инерции. Для коботов, с другой стороны, соображения безопасности подразумевают, что они не должны обрабатывать такие большие полезные нагрузки, но благодаря более легкой конструкции они действительно могут достичь большего отношения полезной нагрузки к массе.
Соображения безопасности также ограничивают степень, в которой это уменьшение массы может быть использовано для увеличения рабочих скоростей (Haddadin et al., 2009). Тем не менее, более низкий крутящий момент способствует использованию более легких и быстрых электродвигателей, что в принципе требует более высоких передаточных чисел для этих приложений.
Критерий для характеристики вклада коробки передач в скорость и характеристики полезной нагрузки должен отражать эти аспекты и побуждать нас использовать в нашей структуре (i) максимальную входную скорость, (ii) максимальный повторяемый выходной крутящий момент, называемый моментом ускорения, и номинальный крутящий момент, (iii) ) передаточное число и (iv) отношение крутящего момента к массе как для номинального, так и для момента ускорения.
Сводка
Определение характеристик роботизированных коробок передач — сложная задача: высокая универсальность этих устройств и их сложное взаимодействие с первичными двигателями и системами управления делают прямое сравнение их характеристик особенно сложным.
Передаточное число продемонстрировало сильное влияние на производительность робототехнической системы. Это объясняет его предпочтительную роль в литературе, посвященной оптимизации срабатывания роботов, и растущий интерес робототехников к возможностям использования переменных передач (Kim et al., 2002; Карбон и др., 2004; Страмиджоли и др., 2008; Жирар и Асада, 2017). Хотя мы убеждены, что трансмиссии с регулируемой передачей являются очень многообещающими и определенно будут способствовать формированию будущего ландшафта робототехники, мы ограничили наш анализ здесь компактными коробками передач с постоянным передаточным числом. На данный момент мы считаем, что нам лучше всего подойдет этот ограниченный объем, который может также способствовать выявлению потенциальных областей применения и подходящих технологий для трансмиссий с переменным передаточным числом.
На основе этого анализа мы предлагаем схему оценки будущих роботизированных коробок передач на основе следующих параметров:
• Передаточное число
• Ускорение и номинальный выходной крутящий момент
• Вес
• Форма: диаметр × длина
• Ускорение и номинальный крутящий момент к массе
• КПД: пиковое значение и субъективная зависимость от скорости и крутящего момента
• Топологическая эффективность: коэффициент скрытой мощности
• Пусковой крутящий момент при прямом и обратном движении без нагрузки в% от номинального входного крутящего момента
• Потери, не зависящие от нагрузки
• Потерянное движение
• Максимальная входная скорость
• Жесткость на кручение
Наша структура включает также эталонный вариант использования, характерный для множества задач pHRI согласно нашему собственному опыту: моменты ускорения более 100 Нм и передаточные числа более 1: 100, для которых необходимо оптимизировать вес, компактность и эффективность.
Обзор технологий передачи данных, используемых в настоящее время в промышленных роботах
Электродвигатели, оснащенные механическими трансмиссиями, обычно используются в качестве исполнительных механизмов в робототехнике (Rosenbauer, 1995; Scheinman et al., 2016), а также в промышленных роботах. Эти механические трансмиссии почти неизбежно основаны на какой-то зубчатой передаче (Sensinger, 2013).
Благодаря их большей способности снижать общий вес и поскольку электродвигатели имеют тенденцию иметь более высокий КПД на высоких рабочих скоростях, еще одной характеристикой промышленных роботизированных трансмиссий является использование относительно больших коэффициентов передачи (передаточных чисел), обычно более 1:40 (Розенбауэр, 1995).
Планетарные редукторы: чрезвычайно универсальная платформа
Планетарные зубчатые передачи(PGT) — это компактные, универсальные устройства, широко используемые в силовых передачах. Благодаря характерной коаксиальной конфигурации и хорошей удельной мощности они особенно подходят для вращающихся первичных двигателей, таких как электродвигатели.
PGTмогут использовать две дифференцированные стратегии для достижения высоких коэффициентов усиления: (i) добавление нескольких ступеней обычных, высокоэффективных PGT — здесь называемых редукторами и представленных на рисунке 2 — или (ii) использование особенно компактных конфигураций PGT с возможностью получения высоких передаточные числа.
Рисунок 2 . Внутреннее расположение редуктора Neugart с указанием его основных элементов, адаптировано из Neugart (2020) с разрешения © Neugart GmbH. Он также включает схему базовой топологии.
Хотя использование нескольких ступеней редукторов позволяет наилучшим образом использовать эффективность зацепления высоких шестерен и приводит к высокоэффективным редукторам, это обычно приводит к тяжелым и громоздким решениям. Компактные конфигурации PGT с другой стороны могут достигать высоких передаточных чисел в очень компактных формах, но они страдают от удивительно высоких потерь, связанных с высокими виртуальными мощностями (Crispel et al. , 2018).
Особенно компактная конфигурация PGT для высоких передаточных чисел была впервые изобретена Вольфромом (1912) и использовалась в редукторах серии RE компании ZF Friedrichshafen AG (ZF), предназначенных для промышленных роботов (Looman, 1996). Эта конфигурация, показанная на Рисунке 3, сильно зависит от Virtual Power, и ZF представляет собой единственное известное коммерческое применение конфигураций PGT, отличное от обычных редукторов. Хотя производство серии RE было прекращено в 90-х годах, Wolfrom PGT в последнее время пользуются растущим интересом сообщества исследователей робототехники, как мы резюмировали в предыдущей статье авторов (López-García et al., 2019а).
Рисунок 3 . Внутреннее устройство ZF’s RG Series Wolfrom PGT для роботизированных приложений адаптировано из Looman (1996) с разрешения © 1998 Springer-Verlag Berlin Heidelberg. Он также включает схему базовой топологии.
Таблица 1 представляет оценку PGT. Несмотря на завышенные размеры для нашего теста, мы использовали ZF RG350 Wolfrom PGT, чтобы попытаться оценить потенциал конфигураций PGT с высоким коэффициентом передачи, основываясь на имеющихся доказательствах его пригодности для достижения высоких коэффициентов (Арнаудов и Караиванов, 2005; Mulzer, 2010 ; Капелевич и AKGears LLC, 2013).Для редукторов мы выбрали — при поддержке производителей — подходящие решения из портфолио Wittenstein и Neugart. Стоит отметить важную роль, которую играет максимальное передаточное число на ступень в редукторе: в то время как Виттенштейн ближе к максимуму осуществимости, определяемому избеганием контакта между соседними планетами, Нейгарт выбирает в своей серии PLE (серия PLFE может достигать 1: 100 соотношений только в два этапа) более ограничительный подход и, следовательно, для достижения общего усиления 1: 100 требуется три этапа вместо двух для Виттенштейна.Это приводит к менее компактным решениям и более низкой эффективности для приложения 1: 100, но позволяет Neugart достичь более высокого выигрыша — до 1: 512 — без фундаментальных изменений в весе, размере или эффективности.
Таблица 1 . Схема оценки решений с планетарной зубчатой передачей.
Редукторыимеют вес около 4 кг, что нельзя напрямую сравнивать с увеличенными размерами RG350. RG350 имеет форму с большим диаметром и меньшей длиной, чем редукторы.Что касается отношения крутящего момента к весу, значения обоих решений кажутся относительно близкими.
Редукторыимеют сильное преимущество в их хорошем КПД (выше 90%), который также менее чувствителен к изменениям рабочих условий, а пусковые моменты холостого хода очень низкие. Конфигурации с высоким коэффициентом полезного действия показывают, насколько сильно ограничивается топологическая эффективность, что приводит к снижению эффективности. Это, вероятно, объясняет, почему редукторы сегодня являются доминирующей технологией PGT в робототехнике.
PGTпоказывают самые высокие входные скорости (до 8 500 об / мин), но их потери хода также самые большие (4–6 Arcmin) в обычных редукторах. В робототехнике PGT широко использовались в первых промышленных роботах, в то время как в последние десятилетия их использование сильно сократилось, в основном из-за их ограничений, связанных с уменьшением люфта. Несмотря на то, что существуют механизмы, ограничивающие по своей природе более значительную обратную реакцию PGT, на практике они основаны на введении определенной предварительной нагрузки, что отрицательно сказывается на их эффективности (Schempf, 1990).
Гармонические приводы: без люфта, легкий редуктор деформационной волны
Редуктор Strain Wave был изобретен Массером (1955) и нашел широкое применение в 70-х годах, первоначально в аэрокосмической отрасли. Его основное космическое применение было в качестве механического передающего элемента в аппарате лунохода Аполлона 15 в 1971 году (Schafer et al., 2005).
Его название происходит от характерной деформации Flexspline , нежесткой, тонкой цилиндрической чашки с зубьями, которая служит выходом.Flexspline входит в зацепление с неподвижным сплошным круглым кольцом с внутренними зубьями шестерни Circular Spline , в то время как он деформируется вращающейся эллиптической заглушкой — волновым генератором , как это видно на рисунке 4. Этот тип редуктора наиболее подходит обычно называют Harmonic Drive © (HD) из-за очень эффективной стратегии защиты IP.
Рисунок 4 . Внутренняя конфигурация коробки передач Harmonic Drive CSG (слева), адаптированная из Harmonic Drive (2014) с разрешения © 2019 Harmonic Drive SE, и коробка передач E-Cyclo (справа), адаптированная из SUMITOMO (2020) с разрешения © Sumitomo Drive, 2020 Germany GmbH.Также включена схема их базовой топологии KHV, используемая для расчета его скрытого коэффициента мощности в Приложении I.
Для нашего сравнительного анализа мы выбрали два подходящих редуктора Harmonic Drive, CSD-25-2A, предназначенный для интеграции в роботизированное соединение, чтобы обеспечить адекватные структурные граничные условия, и сверхлегкий редуктор CSG-25-LW, представляющий конструктивно достаточное решение. что может быть более прямо по сравнению с другими технологиями. Совсем недавно компания SUMITOMO представила новую коробку передач E-CYCLO, работающую также на принципе действия волны деформации.SUMITOMO предоставила нам доступ к своему самому последнему каталогу (SUMITOMO, 2020), что позволило нам включить его в наш тест (Таблица 2). Еще одна интересная волна деформации, очень похожая на гармонический привод, недавно была также представлена GAM в своей серии коробок передач для робототехники, которая включает также планетарные зубчатые передачи и циклоидные приводы (GAM, 2020).
Таблица 2 . Схема оценки решений волн деформации.
Выбранная модель CSG имеет значительно больший крутящий момент, чем предполагалось в нашем тесте.Форма имеет больший диаметр, чем длина, а вес значительно ниже, чем у других технологий, и приводит к лучшему соотношению крутящего момента к массе из проанализированных технологий. Действительно, характерное зацепление с несколькими зубьями обеспечивает большее сопротивление крутящему моменту, чем в PGT, что делает эту технологию очень подходящей для соединений, расположенных ближе к рабочему органу, где они часто встречаются в современных промышленных роботах.
Пиковый КПД ниже, чем у редукторов, и ближе к RG350, а КПД особенно чувствителен к условиям эксплуатации.Поезда Strain Wave демонстрируют большие потери, не зависящие от нагрузки, и пусковые моменты без нагрузки — особенно в условиях обратного движения, которые становятся особенно критическими для высоких скоростей и / или низких крутящих моментов (Harmonic Drive, 2014). Для роботизированных устройств HRI, подверженных частым изменениям скорости и полезной нагрузки в сочетании с обменом энергией между роботизированным устройством и пользователем, это означает, что средняя эффективность быстро падает ниже 40–50% (López-García et al., 2019b). Стоит также отметить их большой коэффициент скрытой мощности, указывающий на одновременное присутствие высоких крутящих моментов и скоростей в зацеплении зубьев, что также помогает объяснить относительно низкий КПД.
Еще раз, благодаря зацеплению с несколькими зубьями, можно достичь потерянных движений ниже 1 угловой минуты, что дает этому редуктору сильное преимущество, которое помогает гармоническим приводам находить широкое применение в промышленных роботах. Они смогли вытеснить PGT из многих приложений, особенно после значительного улучшения характеристик в результате новой геометрии зубьев, представленной этой компанией в 90-х годах, что также улучшило линейность их жесткости (Slatter, 2000).
Максимальная входная скорость раньше была сильным ограничением для использования редукторов HD (Schempf, 1990), но новые достижения и улучшения конструкции позволяют им теперь достигать 7500 об / мин.
Циклоидные приводы: для высокой прочности и жесткости на кручение
С момента своего изобретения Лоренцем Брареном в 1927 году (Li, 2014) циклоидные приводы нашли применение в основном в лодках, подъемных кранах и некотором крупном оборудовании, таком как прокатные станы или станки с ЧПУ. В циклоидных приводах эксцентричное входное движение создает шаткое циклоидальное движение одиночного большого планетарного колеса, которое затем преобразуется обратно во вращение выходного вала и приводит к высокой редукционной способности (Gorla et al. , 2008), см. Рисунок 5.
Рисунок 5 . Внутренняя конфигурация циклоидных приводов SUMITOMO Fine Cyclo F2C-A15 и Fine Cyclo F2C-T155, идентифицирующая их основные элементы, адаптирована из SUMITOMO (2017) с разрешения © Sumitomo Cyclo Drive Germany GmbH, 2017. Он также включает схему лежащих в основе топологий.
Таблица 3 включает лидера рынка (NABTESCO RV) в этом сегменте и основных претендентов (SPINEA и SUMITOMO). RV от NABTESCO и серия Fine-Cyclo T от SUMITOMO включают в себя обычную ступень PGT с предварительным зацеплением.Полезная нагрузка этих устройств больше, чем требуется для нашего теста, и приводит к большому весу. Это уже дает ценную информацию: более компактные решения недоступны на рынке и, согласно информации, предоставленной некоторыми производителями, менее интересны, поскольку для них потребуется высочайшая точность изготовления и, в конечном итоге, приведет к высоким затратам.
Таблица 3 . Схема оценки решений для циклоидных приводов.
Формы аналогичны коробкам передач с волновой деформацией, а по массе больше и ближе к весам PGT по вышеупомянутым причинам.Отношение крутящего момента к массе больше, чем у PGT, но немного ниже, чем у редукторов с волновой деформацией. Основное преимущество циклоидных приводов заключается именно в их способности выдерживать большие нагрузки и особенно ударные нагрузки, а также в минимальных затратах на техническое обслуживание.
Пиковый КПД выше, чем у редукторов с волновой деформацией, и ближе к КПД PGT, но КПД сильно зависит от условий эксплуатации (Mihailidis et al., 2014), и пусковые моменты холостого хода, и коэффициент скрытой мощности высоки. аналогично редукторам с волновой деформацией.
Хотя они, как правило, имеют некоторый люфт, который часто компенсируется в их конструкции для достижения уровней, сопоставимых с уровнями редукторов с волновой деформацией, вероятно, за счет немного более высокого трения. Их жесткость на кручение — самая большая из проанализированных технологий редукторов.
ПриводыCycloid имеют неотъемлемое ограничение на работу с высокими входными скоростями, вызванное наличием большого и относительно тяжелого планетарного (кулачкового) колеса, что приводит к большим инерциям и дисбалансу.Это мотивирует использование, как правило, двух планетарных колес, расположенных последовательно и смещенных на 180 градусов друг к другу, для устранения дисбаланса, уменьшения вибраций и увеличения входной скорости. Это объясняет, как благодаря объединению циклоидных приводов со ступенями предварительного зацепления, состоящими из обычных ступеней PGT, циклоидные приводы получили широкое распространение в робототехнике. Такое расположение повышает эффективность, снижает чувствительность к высоким входным скоростям и обеспечивает легкую адаптацию их передаточных чисел.В 90-х годах гармонические приводы доминировали на рынке роботизированных коробок передач, но усовершенствования циклоидной технологии позволили циклоидным приводам начать покорять бездорожье, сначала в Японии, а затем в других местах (Rosenbauer, 1995). В настоящее время производители, такие как NABTESCO, SUMITOMO или NIDEC, предлагают циклоидные гибриды с интегрированным передаточным механизмом PGT, покрывающие более 60% рынка роботизированных коробок передач, и поэтому стали новой доминирующей технологией, особенно для проксимальных суставов, подверженных более высоким нагрузкам и меньшим ограничениям по весу (WinterGreen Исследования, 2018).
Наконец, стоит упомянуть наличие относительно большой пульсации крутящего момента, которая вносит нелинейности и усложняет их контроль. Эта пульсация крутящего момента связана с необходимостью использования циклоидных профилей зубьев, чтобы избежать столкновения зубьев между большим планетарным колесом (-ами) и зубчатым венцом, что делает эти устройства чрезвычайно чувствительными к изменениям межцентрового расстояния, возникающим даже из-за небольших производственных ошибок. Существует несколько попыток улучшить эту ситуацию, используя эвольвентные зубья, менее чувствительные к изменениям межцентрового расстояния, с уменьшенными углами давления и / или коэффициентами контакта для минимизации радиальных сил и повышения эффективности (Морозуми, 1970), а также с использованием других форм нестандартных зубьев. -инволютные зубы (Коряков-Савойский и др., 1996; Хлебаня и Куловец, 2015).
Обзор новых технологий передачи для робототехники
Усилитель крутящего момента REFLEX
Genesis Robotics привлекла большое внимание в сообществе робототехники с появлением их двигателя с прямым приводом, LiveDrive © . Согласно Genesis, LiveDrive в двух доступных топологиях — радиальном и осевом потоках — обеспечивает сравнительные характеристики в соотношении крутящего момента к массе. Двигатель с осевым магнитным потоком может достигать 15 Нм / кг, в то время как радиальный поток ограничивается максимум 10 Нм / кг.
Чтобы расширить спектр применения, Genesis Robotics представила совместимую коробку передач под названием Reflex , показанную на рисунке 6. Эта литая под давлением сверхлегкая пластиковая коробка передач предназначена для легких роботов, и хотя изначально она была разработана для совместной работы с LiveDrive. и поэтому он нацелен на передаточные числа ниже 1:30, он также способен обеспечивать передаточные числа до 1: 400 (GENESIS, 2018).
Рисунок 6 . Внутренняя конфигурация и основные элементы редуктора Reflex адаптированы из GENESIS Robotics (2020) с разрешения © 2019 Genesis Robotics.Он также включает схему базовой топологии.
Базовая топология — топология Wolfrom PGT с несколькими меньшими планетами (Klassen, 2019), в которой реактивное (неподвижное) зубчатое колесо разделено на две части для балансировки, в соответствии с конструкцией, первоначально предложенной Россманом (1934) и используемой в качестве хорошо в аппарате Hi-Red Tomcyk (2000).
В редукторе Reflex выходное кольцо также разделено для облегчения сборки с косозубыми зубьями. Еще одним интересным аспектом этой конструкции является заклеенная лентой форма планет, которая, как подозревают авторы, связана с возможностью предварительной нагрузки системы для достижения нулевого люфта, который, как утверждает Genesis, возможен с этой коробкой передач.По заявлению компании, гибкость пластиковых планетарных колес также дает преимущество в уменьшении люфта.
К сожалению, пока нет независимых тестов, подтверждающих данные характеристики, и никаких официальных данных, особенно по эффективности, от Genesis пока нет, поэтому в Таблицу 4 включено только значение Latent Power Ratio, вытекающее из его топологии.
Таблица 4 . Схема оценки новых технологий редукторов.
Таким образом, хотя лежащая в основе топология Wolfrom указывает на то, что эффективность, безусловно, будет сложной задачей, эта инновационная коробка передач демонстрирует большой потенциал, доступный для переосмысления существующих технологий и их адаптации к будущим потребностям робототехники. Genesis Robotics недавно вступила в интересное партнерство с известными промышленными компаниями, такими как Koch Industries Inc. и Demaurex AG.
Проезд Архимеда
IMSystems из Нидерландов является дочерним предприятием Делфтского технологического университета, созданного в 2016 году для использования изобретения Archimedes Drive (Schorsch, 2014).
Привод Архимеда снова повторяет топологию редуктора Wolfrom (также с разрезным реактивным зубчатым венцом в некоторых его конструкциях), но включает в себя революционное новшество в использовании роликов вместо зубчатых колес для замены зубчатых контактов контактами качения, см. Рисунок 7. Контролируемая деформация планетарных роликов позволяет передавать крутящий момент между планетами аналогично колесам транспортного средства.
Рисунок 7 . Внутренняя конфигурация привода Архимеда с деталями, показывающими его планеты Flexroller, адаптирована из IMSystems (2019) с разрешения © 2019 Innovative Mechatronic Systems B.V., со схемой лежащей в основе топологии.
Характеристики, представленные в таблице 4, взятой из брошюры компании (IMSystems, 2019) и доступной по запросу, показывают, что использование топологии Wolfrom дает этому устройству возможность достигать очень высоких передаточных чисел в компактной форме, но это также приводит к низкой топологической эффективности. Согласно IMSystems, замена контакта зубчатого колеса на контакт качения способствует минимизации потерь в контакте, которые, в частности, при передаче крутящего момента между планетарной передачей и кольцевыми роликами должны компенсировать высокое латентное соотношение мощности и приводить к максимальному КПД. около 80% (IMSystems, 2019).Никаких данных о пусковых моментах или потерях, не зависящих от нагрузки, не приводится.
Чтобы обеспечить передачу высокого крутящего момента без проскальзывания, необходимо строго контролировать деформацию роликов планетарного механизма, а также производственные допуски коробки передач. Это представляет собой одну из основных технологических проблем, и это ядро инноваций, вносимых этой технологией (Schorsch, 2014).
NuGear
STAM s.r.l. — частная инженерная компания из Генуи, которая помогла разработать роботизированный сустав для гуманоидного робота I-Cub.Их NuGear — это нутационная коробка передач, которая изначально была задумана (Барбагелата и Корсини, 2000) для космических приложений, но могла бы развить свой потенциал для робототехники также за счет исследования альтернативных производственных средств.
Пока нет общедоступной информации о рабочих характеристиках этой коробки передач, что означает, что мы можем предоставить здесь только предварительный анализ ее топологии и результирующих характеристик, которых можно ожидать на основе ограниченной информации, доступной в основном из проекта Caxman EU ( CAxMan, 2020), для которого NuGear был вариантом использования, и из доступных патентов (Barbagelata et al. , 2016).
На рисунке 8 внутренняя структура NuGear представлена с использованием эквивалентной конфигурации PGT — для облегчения понимания абстрагируется аспект нутации. Таким образом становится ясно, что NuGear напоминает два PGT Wolfrom, для которых несущая используется в качестве входа, соединенных последовательно, и где каждый из них соответствует одному из двух этапов, определенных в Barbagelata et al. (2016). Это еще раз указывает на то, что в этой коробке передач будет присутствовать относительно высокий коэффициент скрытой мощности.Для передаточного числа 1: 100 и при условии сбалансированного усиления 1:10 на каждой из двух ступеней, как предложено в Barbagelata et al. (2016), мы получаем, используя уравнения, выведенные в Приложении I, коэффициент скрытой мощности 32, что указывает на топологическую эффективность, аналогичную таковой у Wolfrom PGT.
Рисунок 8 . Внутренняя конфигурация двухступенчатой коробки передач NuGear для версии с оппозитными контактами планет адаптирована из CAxMan (2020) с разрешения © Stam S.r.l. Он также включает схему базовой топологии.
Еще предстоит подтвердить, в какой степени использование методов аддитивного производства может помочь STAM s.r.l. снизить большие затраты на производство конических зубчатых колес, а также определить, сможет ли операция нутации достичь достаточной надежности и более компактной формы, которые могут открыть дверь для ее использования в области робототехники (CAxMan, 2020).
Двусторонний привод
Компания FUJILAB в Иокогаме предложила в Fujimoto (2015) коробку передач с высокой степенью управляемости для робототехники, которая особенно подходит для работы без датчика крутящего момента (Kanai and Fujimoto, 2018).
Как видно на Рисунке 9, конфигурация этого устройства снова аналогична PGT Wolfrom. При такой топологии Fujimoto et al. смогли достичь при передаточном числе 1: 102 КПД при движении вперед 89,9% и КПД при движении задним ходом 89,2%. Пусковой крутящий момент без нагрузки в обратном направлении составил 0,016 Нм в коробке передач с внешним диаметром ~ Φ50 мм (Kanai and Fujimoto, 2018). Стратегия достижения такой высокой эффективности с топологией Wolfrom заключается в оптимизации коэффициентов сдвига профиля (Fujimoto and Kobuse, 2017).
Рисунок 9 . Внутренняя конфигурация двустороннего привода, высокоэффективной коробки передач, способной обеспечивать передаточное число 1: 102 с использованием топологии Wolfrom, любезно предоставлено © Yasutaka Fujimoto.
Эти многообещающие результаты — см. Таблицу 4 — показывают, что выравнивание соотношений подвода и углубления посредством оптимизации коэффициентов смещения профиля может привести к чрезвычайно высокой эффективности зацепления. Насколько известно авторам, эта стратегия была первоначально предложена Хори и Хаяши (1994) и особенно интересна в топологии Wolfrom, где она может в конечном итоге обеспечить эффективность выше 90% в сочетании с высокими передаточными числами и компактными топологиями.
Привод подшипника шестерни
Вслед за новаторской работой в этой области Джона М. Враниша из НАСА, результатом которой стало изобретение планетарной шестерни без водила во Вранише (1995) и подшипников с частичными зубьями (Враниш, 2006), NASA Goddard Space Центр управления полетами представил свою концепцию нового зубчатого подшипника в Вайнберге и др. (2008).
Северо-Восточный университет в Бостоне продолжил разработку этого нового привода для применения в роботизированных соединениях.Как видно на Рисунке 10, он включает в себя коробку передач Wolfrom, адаптированную для включения конструкции Vranish без опоры и зубчатых подшипников. Подшипники шестерен представляют собой контакты качения, которые предусмотрены для каждой пары зацепных шестерен в соответствии с их делительным диаметром и уменьшают нагрузку на подшипники коробки передач (Brassitos et al., 2013). Эта топология обеспечивает удобную интеграцию электромотора, который, следовательно, встроен в полую часть большого солнечного зубчатого колеса в конфигурации, специально предназначенной для космических приложений (Brassitos and Jalili, 2017).
Рисунок 10 . Внутренняя конфигурация зубчатого подшипника, включая встроенный бесщеточный двигатель, адаптирована из Brassitos and Jalili (2017) с разрешения © 2017 Американское общество инженеров-механиков ASME. Справа также показана лежащая в основе топология Wolfrom с расщепленным реакционным кольцом.
В Brassitos and Jalili (2018) металлический прототип привода с зубчатым подшипником с передаточным числом 1:40 характеризуется жесткостью, трением и кинематической погрешностью.Измерения полностью соответствуют данным FUJILAB и подтверждают низкий пусковой момент без нагрузки в этой конфигурации (0,0165 Нм для внешнего диаметра коробки передач ~ 100 мм). После экспериментального измерения жесткости, трения и кинематической погрешности их привода (Brassitos and Jalili, 2018) интегрировали эти значения в динамическую модель, которая затем была смоделирована и сравнена с откликом скорости разомкнутого контура системы при свободном синусоидальном движении, показав хорошие результаты. корреляция и предлагает очень удобную высокую линейность передачи.
Предварительные измерения показали хороший комбинированный КПД двигателя и коробки передач Wolfrom с передаточным числом 1: 264 (Brassitos et al., 2013), что не очень хорошо коррелирует с рассчитанным скрытым коэффициентом мощности 196. КПД не был определен. снова в центре внимания недавних статей авторов, и мы, к сожалению, не смогли на данный момент подтвердить окончательные уровни эффективности, которых могут достичь новые прототипы.
В любом случае, привод с зубчатым подшипником дает очень интересные возможности для использования потенциала топологии Wolfrom в робототехнике.Возможность удаления несущего элемента и встраивания электродвигателя в коробку передач в общем корпусе позволяет получить впечатляюще компактные конструкции. Возможность использования продольных роликов зубчатых подшипников для уменьшения радиальной нагрузки на подшипники также является многообещающим вариантом для повышения компактности и повышения эффективности (Brassitos et al. , 2019).
Галакси Драйв
Schreiber and Schmidt (2015) защищает основные инновации, включенные в Galaxie Drive, коробку передач, которую WITTENSTEIN в настоящее время выводит на рынок прецизионных коробок передач через свой стартап Wittenstein Galaxie GmbH, созданный в апреле 2020 года.
Хотя таблица данных и подробная информация еще не доступны, также раскрыты принцип работы и ожидаемая прибыль. Galaxie Drive представляет новый кинематический подход, основанный на линейном наведении единственного зуба в зубчатом каркасе Teeth Carrier , но, по словам этих авторов, его топология напоминает топологию деформационно-волнового механизма, см. Рис. 11. Гибкая линия заменена зубцами Держатель, включающий два ряда отдельных зубцов, выполнен с возможностью радиального перемещения и зацепления с круговым шлицем в качестве вращающегося многоугольного вала выполняет роль генератора волн с многоугольным периметром (Schreiber and Röthlingshöfer, 2017).Следовательно, несколько отдельных зубьев входят в зацепление одновременно с круговым шлицем — так же, как в Harmonic Drive. По словам производителя, это вместе с двухточечным контактом с высокой устойчивостью к крутящему моменту между каждым отдельным зубом и зубчатым каркасом обеспечивает этому устройству характерный нулевой люфт, высокую жесткость на кручение и эталонное соотношение крутящего момента к весу.
Рисунок 11 . Деталь зацепления зубьев коробки передач Galaxy (R) DF адаптирована из Schreiber (2015) с разрешения © 2020 Wittenstein Galaxie GmbH.Он включает схему базовой топологии KHV.
В ходе прямого обмена мнениями представители Виттенштейна подтвердили, что очевидная проблема трения между отдельными зубьями и их направляющим круговым кольцом решена, и Galaxie может достичь максимальной эффективности выше 90%. Из-за лежащей в основе конфигурации KHV ожидаются большие коэффициенты скрытой мощности, но пока невозможно получить дальнейшее представление об эффективности зацепления, которая будет результатом радиального движения зубьев, которое включает новую логарифмическую спиральную боковую поверхность зуба (Мишель, 2015).
Первоначально привод Galaxie Drive предназначался для высокоточного оборудования, где высокая жесткость и сопротивление крутящему моменту могут помочь увеличить скорость и повысить производительность. В будущем мы, безусловно, сможем оценить потенциал этой инновационной технологии также для робототехнических приложений.
Обсуждение
Новое поколение робототехнических устройств меняет приоритеты в выборе подходящих коробок передач. Вместо высочайшей точности на высоких скоростях эти устройства предъявляют более строгие требования к легким и очень эффективным устройствам с механическим усилением.
Сверхлегкие приводы деформационных волн (HD, E-cyclo), безусловно, находятся в очень хорошем положении для удовлетворения этих потребностей, что подтверждается их нынешним доминированием в области коботов. При рассмотрении привода деформационной волны для роботизированной задачи pHRI работа при низких крутящих моментах и скоростях должна быть сведена к минимуму, если эффективность должна быть максимальной. Хотя их оптимизированная геометрия зубьев способствует более линейной жесткости на кручение, трение остается очень нелинейным и зависит от направления, вызывая также определенные ограничения использования.Храповик как следствие ударной нагрузки — еще одно ограничение, которое следует учитывать для этого типа редуктора, которое E-Cyclo не должен иметь (SUMITOMO, 2020).
Циклоидные приводыпрошли долгий путь, чтобы в конечном итоге стать доминирующей технологией в промышленных роботах. Благодаря технологическим достижениям, направленным на уменьшение люфта и ограничений скорости ввода, они теперь могут обеспечивать хорошую точность с приемлемой эффективностью, несмотря на высокие скрытые коэффициенты мощности, возникающие из-за базовой топологии KHV, эквивалентной топологии приводов с волновой деформацией.Использование ступени перед зацеплением также вносит важный вклад в достижение этой цели за счет повышения базовой топологической эффективности. Сверхлегкие конструкции, подобные конструкции SPINEA, демонстрируют интересный потенциал, но в конечном итоге потребуются более прорывные подходы, такие как пластиковые материалы, чтобы удовлетворить потребности в более легких коробках передач и более высоких передаточных числах, необходимых для HRI. Пока это не станет возможным, циклоидные приводы можно рассматривать только для больших полезных нагрузок, когда их больший вес и результирующая инерция не критичны для работы.Когда исключительная точность не требуется, можно избежать мер компенсации люфта в пользу повышения эффективности и более низких пусковых моментов. В любом случае следует позаботиться о том, чтобы адекватно управлять пульсацией крутящего момента, и, вероятно, необходимо будет остаться на этапе перед включением, чтобы обеспечить высокие скорости входного двигателя.
Невозможность планетарных редукторов уменьшить люфт при сохранении хорошей производительности и ограничения жесткости на кручение ограничили их использование в промышленной робототехнике. Тем не менее, PGT чрезвычайно универсальны, что демонстрирует их широкое использование во множестве современных промышленных устройств.И они изначально эффективны, надежны и относительно просты — дешевы — в производстве. Это может объяснить недавний интерес робототехников к PGT и почему пять из шести изученных здесь принципиально инновационных редукторов основаны на конфигурации PGT с высоким передаточным числом: топологии Wolfrom. Лучшая топологическая эффективность в сочетании с улучшением эффективности зацепления за счет модификации профиля или даже еще одного шага вперед по замене зубьев контактами качения являются многообещающими характеристиками. В сочетании с возможностями, открываемыми их полой топологией, эти элементы потенциально могут привести к возвращению PGT в робототехнику.
Наше исследование показывает, что большая универсальность технологий редукторов, используемых в робототехнике, представляет собой серьезную проблему для прямого сравнения их характеристик. Как показывают примеры люфта и максимальной входной скорости, адекватные модификации конструкции могут надлежащим образом компенсировать большинство исходных слабых мест определенной технологии за счет компромиссов в других аспектах, обычно включая эффективность, размер, вес и стоимость. Точно так же большие скрытые коэффициенты мощности указывают на существенный топологический недостаток с точки зрения эффективности, но он также может быть — по крайней мере частично — компенсирован соответствующими модификациями.Таким образом, обучающий эффект заключается в том, что выбор подходящей технологии редуктора для определенного применения pHRI является чрезвычайно сложным процессом, требующим глубокого понимания фундаментальных недостатков, возможностей улучшения и производных компромиссов каждой технологии. Наша первоначальная цель исследования — внести свой вклад в простую таблицу выбора, способную помочь неопытным робототехникам в выборе подходящих технологий редукторов для своих роботизированных устройств, поэтому не могла быть достигнута.Вместо этого в этой статье собраны и объясняются основные параметры выбора и связанные с ними проблемы в каждой из доступных технологий, чтобы помочь инженерам-роботам pHRI развить необходимые навыки, необходимые для осознанного выбора подходящей, индивидуально оптимизированной коробки передач.
Два важных аспекта роботизированных редукторов для pHRI, к сожалению, не могут быть адекватно оценены в нашем исследовании на данном этапе: шум и стоимость. По мере того как робототехнические устройства становятся все ближе к людям, робототехники уделяют все больше внимания шуму.Редукторы, безусловно, представляют собой важный источник шума (переносимого воздухом и конструкциями), но, к сожалению, на данном этапе рекомендуется исключить шум из нашего анализа по двум основным ограничениям. Во-первых, большинство производителей редукторов еще не предоставляют количественных оценок шумовых характеристик, и когда они это делают, они, как правило, следуют другим методам испытаний, которые также не особенно подходят для рабочих условий в pHRI. Во-вторых, современные технологии коробок передач все еще должны пройти ожидаемый процесс оптимизации шума.
Стоимость также является важным параметром, делающим технологии pHRI более доступными, и поэтому становится важным при выборе подходящих редукторов для будущих робототехнических технологий. К сожалению, и здесь научному сообществу доступно недостаточное количество исходной информации для систематической справедливой оценки крупномасштабного экономического потенциала определенной технологии редукторов. Прежде чем можно будет определить подходящую основу для оценки этого потенциала, требуется большой объем исследовательской работы, которая явно выходит за рамки нашего исследования.
Эти два ограничения очерчивают основные рекомендации авторов для интересных направлений будущих исследований. Определение стандартных условий испытаний на воздушный и конструктивный шум в коробках передач, особенно адаптированных к типичным условиям эксплуатации и потребности в pHRI, могло бы позволить прямое сравнение различных технологий и способствовать их оптимизации шума. Кроме того, составление доступных моделей затрат для производственных процессов, связанных с изготовлением коробок передач, и их адаптация к специфике конкретных технологий, используемых в робототехнике, позволит составить основу для оценки потенциала крупномасштабных затрат (и препятствий) разные технологии.
Авторские взносы
Все авторы принимали участие в предварительной работе, связанной с этой темой исследования, и внесли свой вклад в концептуализацию структуры, представленной в рукописи. PG работала над созданием подходящей системы оценки для выполнения анализа коробки передач и взяла на себя инициативу в написании рукописи и преобразовании ее в ее текущую форму. PG и ES в равной степени способствовали выявлению потенциально подходящих технологий и их анализу с помощью структуры.Все корректуры авторов прочитали и внесли свой вклад в окончательную версию статьи.
Финансирование
SC, ES (доктор философии) и TV (доктор наук) являются научными сотрудниками Исследовательского фонда Фландрии — Fonds voor Wetenschappelijk Onderzoek (FWO). Эта работа частично финансируется Программой исследований и инноваций Европейского Союза Horizon 2020 в рамках Соглашения о гранте № 687662 — проект SPEXOR.
Конфликт интересов
Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.
Благодарности
Авторы хотели бы поблагодарить профессора Ясутака Фудзимото из Йокогамского национального университета, а также компании Neugart GmbH, Harmonic Drive SE, Sumitomo Drive Germany GmbH, Genesis Robotics, Innovative Mechatronic Systems B.V., Stam s.r.l. и Wittenstein Galaxy GmbH за любезную поддержку и полученные объяснения, а также за разрешение использовать прилагаемые изображения их устройств.
Дополнительные материалы
Дополнительные материалы к этой статье можно найти в Интернете по адресу: https: // www.frontiersin.org/articles/10.3389/frobt.2020.00103/full#supplementary-material
Список литературы
Альбу-Шеффер, А., Эйбергер, О., Гребенштейн, М., Хаддадин, С., Отт, К., Вимбок, Т. и др. (2008). Мягкая робототехника. Робот IEEE. Автомат. Mag. 15, 20–30. DOI: 10.1109 / MRA.2008.927979
CrossRef Полный текст | Google Scholar
Arigoni, R., Cognigni, E., Musolesi, M., Gorla, C., and Concli, F. (2010). «Планетарные редукторы: эффективность, люфт, жесткость» в Международной конференции VDI по зубчатым колесам (Мюнхен).
Google Scholar
Арнаудов, К., Караиванов, Д. (2005). «Планетарные зубчатые передачи с высшим составом» в Международная конференция VDI по зубчатым колесам , Vol. 1904 (Мюнхен: VDI-Bericht), 327–344.
Барбагелата А. и Корсини Р. (2000). Riduttore Ingranaggi Conici Basculanti . Патент Италии № IT SV20000049A1. Рим: Ufficio Italiano Brevetti e Marchi.
Барбагелата А., Эллеро С. и Ландо Р. (2016). Планетарная коробка передач .Европейский патент № EP2975296A2. Мюнхен: Европейское патентное ведомство.
Брасситос, Э., Джалили Н. (2017). Разработка и разработка компактного высокомоментного роботизированного привода для космических механизмов. J. Mech. Робот. 9, 061002-1–061002-11. DOI: 10.1115 / 1.4037567
CrossRef Полный текст | Google Scholar
Брасситос, Э., Джалили Н. (2018). «Определение характеристик жесткости, трения и кинематической погрешности в трансмиссиях с зубчатыми подшипниками», в ASME 2018 International Design Engineering Technical Conference и Computers and Information in Engineering Conference (Квебек: цифровая коллекция Американского общества инженеров-механиков).DOI: 10.1115 / DETC2018-85647
CrossRef Полный текст | Google Scholar
Brassitos, E., Mavroidis, C., and Weinberg, B. (2013). «Зубчатый подшипниковый привод: новый компактный привод для роботизированных шарниров», в ASME 2013 Международная техническая конференция по проектированию и Компьютеры и информация в инженерной конференции (Портленд, Орегон: цифровая коллекция Американского общества инженеров-механиков). DOI: 10.1115 / DETC2013-13461
CrossRef Полный текст | Google Scholar
Брасситос, Э., Вайнберг, Б., Цинчао, К., и Мавроидис, К. (2019). Контактная система изогнутого подшипника . Патент США № US10174810B2. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.
Google Scholar
Каланка, А., Мурадор, Р., Фиорини, П. (2015). Обзор алгоритмов совместимого управления жесткими и фиксированными роботами. IEEE / ASME Trans. Мех. 21, 613–624. DOI: 10.1109 / TMECH.2015.2465849
CrossRef Полный текст | Google Scholar
Карбоне, Г., Mangialardi, L., и Mantriota, G. (2004). Сравнение характеристик полнотороидальных и полутороидальных тяговых приводов. мех. Мах. Теория 39, 921–942. DOI: 10.1016 / j.mechmachtheory.2004.04.003
CrossRef Полный текст | Google Scholar
Cetinkunt, S. (1991). Проблемы оптимального проектирования в высокоскоростных высокоточных сервосистемах движения. Мехатроника 1, 187–201. DOI: 10.1016 / 0957-4158 (91)
-ACrossRef Полный текст | Google Scholar
Чен, К.и Анхелес Дж. (2006). Потери виртуальной мощности и механические потери мощности в зубчатых зацеплениях планетарных зубчатых передач. ASME J. Mech. Des. 129, 107–113. DOI: 10.1115 / 1.2359473
CrossRef Полный текст | Google Scholar
Чен, Д. З., и Цай, Л. В. (1993). Кинематический и динамический синтез редукторных робототехнических механизмов. J. Mech. Des. 115, 241–246. DOI: 10.1115 / 1.23
CrossRef Полный текст | Google Scholar
Crispel, S., López-García, P., Verstraten, T., Convens, B., Saerens, E., Vanderborght, B., and Lefeber, D. (2018). «Представляем составные планетарные передачи (C-PGT): компактный способ достижения высоких передаточных чисел для носимых роботов», на Международном симпозиуме по носимой робототехнике (Пиза), 485–489. DOI: 10.1007 / 978-3-030-01887-0_94
CrossRef Полный текст | Google Scholar
Де Сантис А., Сицилиано Б., Де Лука А. и Бикки А. (2008). Атлас физического взаимодействия человека и робота. мех.Мах. Теория 43, 253–270. DOI: 10.1016 / j.mechmachtheory.2007.03.003
CrossRef Полный текст | Google Scholar
Дель Кастильо, Дж. М. (2002). Аналитическое выражение КПД планетарных зубчатых передач. мех. Мах. Теория 37, 197–214. DOI: 10.1016 / S0094-114X (01) 00077-5
CrossRef Полный текст | Google Scholar
Дрессчер, Д., де Врис, Т. Дж., И Страмиджоли, С. (2016). «Выбор мотор-редуктора для повышения энергоэффективности», в Международная конференция IEEE 2016 по усовершенствованной интеллектуальной мехатронике (AIM) (Банф, AB: IEEE), 669–675.DOI: 10.1109 / AIM.2016.7576845
CrossRef Полный текст | Google Scholar
Фудзимото Ю. (2015). Эпициклический зубчатый привод и метод его проектирования . Патент Японии № JP2015164100. Токио: Патентное ведомство Японии.
Fujimoto, Y., and Kobuse, D. (2017). «Роботизированные приводы с высокой управляемостью назад», на международном семинаре IEEJ по обнаружению, срабатыванию, управлению движением и оптимизации (SAMCON) (Нагаока), IS2–1.
GAM (2020 г.). GSL Трансмиссионный редуктор .Каталог.
ГЕНЕЗИС (2018). Усилитель крутящего момента Reflex — движущая сила будущего . Tech Update Общайтесь.
Гиберти Х., Чинквемани С. и Леньяни Г. (2010). Влияние механических характеристик трансмиссии на выбор мотор-редуктора. Мехатроника 20, 604–610. DOI: 10.1016 / j.mechatronics.2010.06.006
CrossRef Полный текст | Google Scholar
Жирар, А., Асада, Х. Х. (2017). Использование естественной динамики нагрузки с приводами с регулируемым передаточным числом. Робот IEEE. Автомат. Lett. 2, 741–748. DOI: 10.1109 / LRA.2017.2651946
CrossRef Полный текст | Google Scholar
Горла К., Даволи П., Роза Ф., Лонгони К., Чиоцци Ф. и Самарани А. (2008). Теоретический и экспериментальный анализ циклоидного редуктора скорости. J. Mech. Des. 130: 112604. DOI: 10.1115 / 1.2978342
CrossRef Полный текст | Google Scholar
Groothuis, S. S., Folkertsma, G.A., и Stramigioli, S. (2018). Общий подход к достижению стабильности и безопасного поведения в распределенных роботизированных архитектурах. Фронт. Робот. AI 5: 108. DOI: 10.3389 / frobt.2018.00108
CrossRef Полный текст | Google Scholar
Хаддадин, С., Альбу-Шеффер, А., и Хирцингер, Г. (2009). Требования к безопасным роботам: измерения, анализ и новые идеи. Внутр. J. Робот. Res , 28, 1507–1527. DOI: 10.1177 / 0278364
3970
CrossRef Полный текст | Google Scholar
Хаддадин, С., Крофт, Э. (2016). «Физическое взаимодействие человека и робота», в Springer Handbook of Robotics (Cham: Springer), 1835–1874.DOI: 10.1007 / 978-3-319-32552-1_69
CrossRef Полный текст | Google Scholar
HALODI Robotics (2018). ДВИГАТЕЛЬ с прямым приводом Revo1 ™ [Брошюра], Moss. Доступно в Интернете по адресу: https://www.halodi.com/revo1 (по состоянию на 30 апреля 2020 г.).
Хэм, Р. В., Шугар, Т. Г., Вандерборг, Б., Холландер, К. В., и Лефебер, Д. (2009). Соответствующие конструкции приводов. Робот IEEE. Автомат. Mag. 16, 81–94. DOI: 10.1109 / MRA.2009.933629
CrossRef Полный текст | Google Scholar
Гармонический привод A.G. (2014) Технические данные Наборы компонентов CSD-2A . Каталог.
Хлебаня Г., Куловец С. (2015). «Разработка плоскоцентрической коробки передач на основе S-образной шестерни», в 11. Kolloquium Getriebetechnik (Мюнхен), 205–216.
Google Scholar
Хоган, Н. (1984). «Контроль импеданса: подход к манипуляции», в 1984 American Control Conference (Сан-Диего, Калифорния: IEEE), 304–313. DOI: 10.23919 / ACC.1984.4788393
CrossRef Полный текст | Google Scholar
Хори, К., и Hayashi, I. (1994). Максимальный КПД обычных механических планетарных шестерен парадокса для понижающего привода. Пер. Jpn. Soc. Мех. Англ. 60, 3940–3947. DOI: 10.1299 / kikaic.60.3940
CrossRef Полный текст
Хантер И. В., Холлербах Дж. М. и Баллантайн Дж. (1991). Сравнительный анализ актуаторных технологий для робототехники. Робот. Ред. 2, 299–342.
Google Scholar
IMSystems (2019). проезд Архимеда.IMSystems — Drive Innovation [Брошюра], Делфт.
Икбал, Дж., Цагаракис, Н. Г., и Колдуэлл, Д. Г. (2011). «Дизайн носимого оптимизированного экзоскелета руки с прямым приводом», в Международной конференции по достижениям в области взаимодействия компьютера и человека (ACHI) (Гозье).
PubMed Аннотация | Google Scholar
Канаи Ю., Фудзимото Ю. (2018). «Бессенсорное управление крутящим моментом для экзоскелета с электроприводом с использованием приводов с высокой степенью обратного привода», на IECON 2018–44-й ежегодной конференции Общества промышленной электроники IEEE (Вашингтон, округ Колумбия: IEEE), 5116–5121.DOI: 10.1109 / IECON.2018.85
CrossRef Полный текст | Google Scholar
Капелевич А. и ООО «AKGears» (2013). Анализ планетарных передач с высоким передаточным числом. Передаточное отношение 3, 10.
Google Scholar
Караяннидис Ю., Друкас Л., Папагеоргиу Д. и Доулжери З. (2015). Управление роботом для выполнения задач и повышения безопасности при ударах. Фронт. Робот. AI 2:34. DOI: 10.3389 / frobt.2015.00034
CrossRef Полный текст | Google Scholar
Кашири, Н., Abate, A., Abram, S.J., Albu-Schaffer, A., Clary, P.J., Daley, M., et al. (2018). Обзор принципов энергоэффективного передвижения роботов. Фронт. Робот. AI 5: 129. DOI: 10.3389 / frobt.2018.00129
CrossRef Полный текст | Google Scholar
Ким, Дж., Парк, Ф. К., Парк, Ю., и Шизуо, М. (2002). Проектирование и анализ сферической бесступенчатой трансмиссии. J. Mech. Des . 124, 21–29. DOI: 10.1115 / 1.1436487
CrossRef Полный текст | Google Scholar
Классен, Дж.Б. (2019). Дифференциальная планетарная коробка передач . Международный патент № WO2019 / 051614A1. Женева: Всемирная организация интеллектуальной собственности, Международное бюро.
Google Scholar
Коряков-Савойский Б., Алексахин И., Власов И. П. (1996). Зубчатая передача . Патент США № US5505668A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.
Google Scholar
Ли С. (2014). «Новейшие технологии проектирования зубчатых передач с большими передаточными числами», в материалах Proceedings of International Gear Conference (Lyon), 427–436.DOI: 10.1533 / 9781782421955.427
CrossRef Полный текст | Google Scholar
Луман, Дж. (1996). Zahnradgetriebe (Зубчатые механизмы) . Берлин: Springer-Verlag. DOI: 10.1007 / 978-3-540-89460-5
CrossRef Полный текст
Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Конвенс, Б., Вандерборгт, Б., и Лефебер, Д. (2018). «Конструкция планетарного редуктора для активной носимой робототехники, основанная на анализе видов отказов и последствий (FMEA)», в International Symposium on Wearable Robotics (Pisa), 460–464.DOI: 10.1007 / 978-3-030-01887-0_89
CrossRef Полный текст | Google Scholar
Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019a). «Редукторы Wolfrom для легкой робототехники, ориентированной на человека», в материалах Proceedings of the International Conference on Gears 2019 (Мюнхен: VDI), 753–764.
Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019b). «Настройка планетарных зубчатых передач для поддержки и воспроизведения конечностей человека», в MATEC Web of Conferences (Варна: EDP Sciences), 01014.DOI: 10.1051 / matecconf / 201928701014
CrossRef Полный текст | Google Scholar
Лафлин, К., Альбу-Шеффер, А., Хаддадин, С., Отт, К., Стеммер, А., Вимбек, Т., и Хирцингер, Г. (2007). Легкий робот DLR: концепции проектирования и управления роботами в среде обитания человека. Ind. Робот. Int. J . 34, 376–385. DOI: 10.1108 / 014390774386
CrossRef Полный текст | Google Scholar
Макмиллан Р. Х. и Дэвис П. Б. (1965). Аналитическое исследование систем раздвоенной передачи энергии. J. Mech. Англ. Sci . 7, 40–47. DOI: 10.1243 / JMES_JOUR_1965_007_009_02
CrossRef Полный текст | Google Scholar
Mayr, C. (1989). Präzisions-Getriebe für die Automation: Grundlagen und Anwendungsbeispiele . Ландсберг: Verlag Moderne Industrie.
Мишель, С. (2015). Logarithmische spirale statt evolvente. Maschinenmarkt № . 18, 40–42.
Михайлидис А., Афанасопулос Э. и Оккас Э. (2014). «Эффективность циклоидного редуктора», в International Gear Conference (Lyon Villeurbanne), 794–803.DOI: 10.1533 / 9781782421955.794
CrossRef Полный текст | Google Scholar
Морозуми, М. (1970). Эвольвентное внутреннее зацепление со смещением профиля . Патент США № US3546972A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.
Google Scholar
Мюллер, Х. В. (1998). Die Umlaufgetriebe: Auslegung und vielseitige Anwendungen . Берлин; Гейдельберг: Springer-Verlag. DOI: 10.1007 / 978-3-642-58725-2
CrossRef Полный текст | Google Scholar
Мульцер, Ф.(2010). Systematik hoch übersetzender koaxialer getriebe (Докторская диссертация). Технический университет Мюнхена, Мюнхен, Германия.
Google Scholar
Musser, C. W. (1955). Деформационно-волновая передача . Патент США № US2
3A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.
НАБТЕКО (2018). Прецизионный редуктор серии RV — N . CAT.180410. Каталог.
Нойгарт, А. Г. (2020). PLE Линия эконом-класса .Каталог.
Ниманн Г., Винтер Х. и Хён Б. Р. (1975). Maschinenelemente, Vol. 1 . Берлин; Гейдельберг; Нью-Йорк, штат Нью-Йорк: Спрингер.
Google Scholar
Pasch, K. A., and Seering, W. P. (1983). «О приводных системах для высокопроизводительных машин», в Машиностроение (Нью-Йорк, Нью-Йорк: Машиностроение Общества ASME-AMER), 107–107.
Pennestri, E., and Freudenstein, F. (1993). Механический КПД планетарных зубчатых передач. ASME J. Mech. Des . 115, 645–651. DOI: 10.1115 / 1.2
CrossRef Полный текст | Google Scholar
Петтерссон, М., и Олвандер, Дж. (2009). Оптимизация трансмиссии промышленных роботов. IEEE Trans. Робот. 25, 1419–1424. DOI: 10.1109 / TRO.2009.2028764
CrossRef Полный текст | Google Scholar
Фам, А. Д., и Ан, Х. Дж. (2018). Прецизионные редукторы для промышленных роботов, участвующих в четвертой промышленной революции: современное состояние, анализ, дизайн, оценка производительности и перспективы. Внутр. J. Precis. Англ. Manuf. Green Technol. 5, 519–533. DOI: 10.1007 / s40684-018-0058-x
CrossRef Полный текст | Google Scholar
Резазаде, С., и Херст, Дж. У. (2014). «Об оптимальном выборе двигателей и трансмиссий для электромеханических и робототехнических систем», в Международная конференция IEEE / RSJ 2014 по интеллектуальным роботам и системам (Чикаго, Иллинойс: IEEE), 4605–4611. DOI: 10.1109 / IROS.2014.6943215
CrossRef Полный текст | Google Scholar
Роос, Ф., Йоханссон, Х., Викандер, Дж. (2006). Оптимальный выбор двигателя и редуктора для мехатронных приложений. Мехатроника 16, 63–72. DOI: 10.1016 / j.mechatronics.2005.08.001
CrossRef Полный текст | Google Scholar
Розенбауэр Т. (1995). Getriebe für Industrieroboter: Beurteilungskriterien . Kenndaten, Einsatzhinweise: шейкер.
Россман, А. М. (1934). Механический механизм . Патент США № US 1970251. Вашингтон, округ Колумбия: У.S. Ведомство по патентам и товарным знакам.
Google Scholar
Saerens, E., Crispel, S., García, P. L., Verstraten, T., Ducastel, V., Vanderborght, B., and Lefeber, D. (2019). Законы масштабирования для роботизированных трансмиссий. мех. Мах. Теория 140, 601–621. DOI: 10.1016 / j.mechmachtheory.2019.06.027
CrossRef Полный текст | Google Scholar
Шафер И., Бурлье П., Хантшак Ф., Робертс Э. У., Льюис С. Д., Форстер Д. Дж. И Джон К. (2005). «Космическая смазка и характеристики шестерен гармонического привода», , 11-й Европейский симпозиум по космическим механизмам и трибологии, ESMATS 2005 (Люцерн), 65–72.
Google Scholar
Шейнман, В., Маккарти, Дж. М., и Сонг, Дж. Б. (2016). «Механизм и приведение в действие», в Springer Handbook of Robotics (Cham: Springer), 67–90. DOI: 10.1007 / 978-3-319-32552-1_4
CrossRef Полный текст | Google Scholar
Шемпф, Х. (1990). Сравнительное проектирование, моделирование и анализ управления роботизированными трансмиссиями (кандидатская диссертация). № WHOI-90-43. Кафедра машиностроения и Океанографический институт Вудс-Холла, Массачусетский технологический институт, Кембридж, Массачусетс, США.DOI: 10.1575 / 1912/5431
CrossRef Полный текст | Google Scholar
Шемпф, Х. и Йоргер, Д. Р. (1993). Изучение основных рабочих характеристик трансмиссий роботов. ASME J. Mech. Des. 115, 472–482. DOI: 10.1115 / 1.2
CrossRef Полный текст | Google Scholar
Шорш, Дж. Ф. (2014). Составной планетарный привод трения . Патент Нидерландов № 2013496. Де Хааг: Octrooicentrum Nederland.
Google Scholar
Шрайбер, Х.(2015). «Revolutionäres getriebeprinzip durch neuinterpretation von maschinenelementen — Die WITTENSTEIN Galaxie®-Kinematik», в Dresdner Maschinenelemente Kolloquium, DMK (Дрезден), 2015. S.
Шрайбер, Х., Рётлингсхёфер, Т. (2017). «Кинематическая классификация коробки передач с отдельными упорными зубьями и ее преимущества по сравнению с существующими подходами», в Международной конференции по зубчатым колесам , ICG (Мюнхен).
Шрайбер, Х., и Шмидт, М.(2015). Getriebe. Патент Германии № DE 10 2015 105 525 A1. Мюнхен: Deutsches Patent- und Markenamt.
Google Scholar
Сенсингер, Дж. У. (2010). «Выбор двигателей для роботов, использующих биомиметические траектории: оптимальные критерии, обмотки и другие соображения», в Международная конференция IEEE по робототехнике и автоматизации, 2010 г., (Анкоридж, AK: IEEE), 4175–4181. DOI: 10.1109 / ROBOT.2010.5509620
CrossRef Полный текст | Google Scholar
Сенсингер, Дж.W. (2013). КПД высокочувствительных зубчатых передач, например, циклоидных передач. ASME J. Mech. Des. 135, 071006-1–071006-9. DOI: 10.1115 / 1.4024370
CrossRef Полный текст | Google Scholar
Сенсинджер, Дж. У., Кларк, С. Д., Шорш, Дж. Ф. (2011). «Внешний и внутренний роторы в роботизированных бесщеточных двигателях», Международная конференция IEEE по робототехнике и автоматизации, 2011 г., (Монреаль, Квебек, IEEE), 2764–2770. DOI: 10.1109 / ICRA.2011.5979940
CrossRef Полный текст | Google Scholar
Сеок, С., Wang, A., Chuah, M. Y. M., Hyun, D. J., Lee, J., Otten, D. M., et al. (2014). Принципы разработки энергоэффективного передвижения на ногах и их реализация на роботе-гепарде Массачусетского технологического института. IEEE / ASME Trans. Мех. 20, 1117–1129. DOI: 10.1109 / TMECH.2014.2339013
CrossRef Полный текст | Google Scholar
Сицилиано Б., Шавикко Л., Виллани Л. и Ориоло Г. (2010). Робототехника: моделирование, планирование и управление . Лондон: Springer Science and Business Media. DOI: 10.1007 / 978-1-84628-642-1
CrossRef Полный текст | Google Scholar
Слэттер Р. (2000). Weiterentwicklung eines Präzisionsgetriebes für die Robotik . Санкт-Леонард: Antriebstechnik.
Google Scholar
SPINEA (2017). TwinSpin — высокоточные редукторы — Präzisionsgetriebe . Каталог.
Страмиджоли, С., Ван Оорт, Г., и Дертьен, Э. (2008). «Концепция нового энергоэффективного привода», в Международная конференция IEEE / ASME 2008 по передовой интеллектуальной мехатронике (Сиань: IEEE), 671–675.DOI: 10.1109 / AIM.2008.4601740
CrossRef Полный текст | Google Scholar
СУМИТОМО (2017). Fine Cyclo® Spielfreie Präzisionsgetriebe . Каталог 9
СУМИТОМО (2020). Приводы управления движением E-Cyclo®. Каталог F10001E-1.
Талбот Д., Кахраман А. (2014). «Методика прогнозирования потерь мощности планетарных передач», в International Gear Conference (Lyon-Villeurbanne), 26–28. DOI: 10.1533 / 9781782421955.625
CrossRef Полный текст
Томчик, Х. (2000). Регулирующее устройство с планетарной передачей . Европейский патент № EP1244880B1. Мюнхен: Европейское патентное ведомство.
Google Scholar
Токсири, С., Наф, М. Б., Лаццарони, М., Фернандес, Дж., Спозито, М., Полиеро, Т. и др. (2019). «Экзоскелеты с опорой на спину для профессионального использования: обзор технологических достижений и тенденций», в IISE Trans. Ок. Эргон. Гул. Факторы 7, 3–4, 237–249.DOI: 10.1080 / 24725838.2019.1626303
CrossRef Полный текст | Google Scholar
Ван де Стрете, Х. Дж., Дегезель П., Де Шуттер Дж. И Бельманс Р. Дж. (1998). Критерий выбора серводвигателя для мехатронных приложений. IEEE / ASME Trans. Мех. 3, 43–50. DOI: 10.1109 / 3516.662867
CrossRef Полный текст | Google Scholar
Вел, А. Дж., И Се, С. К. (2016). На пути к совместимым и пригодным для носки роботизированным ортезу: обзор текущих и новых актуаторных технологий. Med. Англ. Phys. 38, 317–325. DOI: 10.1016 / j.medengphy.2016.01.010
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Verstraten, T., Furnémont, R., Mathijssen, G., Vanderborght, B., and Lefeber, D. (2016). «Энергопотребление мотор-редукторов постоянного тока в динамических приложениях: сравнение подходов к моделированию» в IEEE Robot. Автомат. Lett. 1, 524–530. DOI: 10.1109 / LRA.2016.2517820
CrossRef Полный текст | Google Scholar
Враниш, Дж.М. (1995). Планетарный привод без несущей и против люфта . Патент США № US5409431. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.
Google Scholar
Враниш, Дж. М. (2006). Подшипники частичных зубчатых передач . Патент США № US2006 / 0219039A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.
Google Scholar
Ван, А., Ким, С. (2015). «Направленная эффективность в редукторных трансмиссиях: характеристика обратного движения в сторону улучшенного проприоцептивного контроля», в IEEE International Conference on Robotics and Automation (ICRA) 2015, (Сиэтл, Вашингтон), 1055–1062.DOI: 10.1109 / ICRA.2015.7139307
CrossRef Полный текст | Google Scholar
Вайнберг, Б., Мавроидис, К., и Враниш, Дж. М. (2008). Привод подшипника шестерни . Патент США № US2008 / 0045374A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.
Google Scholar
WinterGreen Research (2018). Прецизионные редукторы деформационных волн и редукторы RV и RD: доли рынка, стратегия и прогнозы, во всем мире, с 2018 по 2024 годы . WIN0418002.
WITTENSTEIN AG (2020 г.). Technische Broschüre SP + und TP + Getrieben. Каталог.
Вольф, А. (1958). Die Grundgesetze der Umlaufgetriebe . Брауншвейг: Фридр. Vieweg и Sohn.
Вольфром, У. (1912). Der Wirkungsgrad von Planetenrädergetrieben. Werkstattstechnik 6, 615–617.
Ю. Д., Бичли Н. (1985). О механическом КПД дифференциала. ASME J. Mech. Пер. Автомат. 107, 61–67.DOI: 10.1115 / 1.3258696
CrossRef Полный текст | Google Scholar
Зинн М., Рот Б., Хатиб О. и Солсбери Дж. К. (2004). Новый подход к срабатыванию для создания роботов, удобных для человека. Внутр. J. Робот. Res. 23, 379–398. DOI: 10.1177 / 0278364
2193
CrossRef Полный текст | Google Scholar
Планетарный роботизированный редуктор с нулевым люфтом, серия GPL
Роботизированная планетарная коробка передач GPL серииGAM сочетает в себе самый низкий люфт и высокую жесткость при опрокидывании с движением без вибрации для плавного, контролируемого движения в робототехнике и управлении движением.
Характеристики
- Люфт ≤ 0,1 угл. Мин. (6 угл. Сек.) , в 10 раз лучше, чем у других прецизионных редукторов
- Лучшая на рынке жесткость на кручение для ≤ 0,6 угл. Мин без холостого хода
- Запатентованная конструкция гарантирует, что люфт не будет увеличиваться в течение срока службы коробки передач
- Проверенная производительность, признанная в отрасли
- Семь типоразмеров с номинальным крутящим моментом на выходе от 445 до 3505 Нм и передаточным числом от 50: 1 до 200: 1
- Фланцевый выход со сплошным валом (GPL-F) или фланцевый выход с полым валом (GPL-H) (сквозное отверстие до 75 мм)
- Встроенная пластина адаптера двигателя , готовая к установке двигателя
- Доступен георадар с прямым углом
- Заменяет двигатели с прямым приводом со значительной экономией
Конструкция коробки передач
Серия GPL состоит из трех этапов:
- Цилиндрическая шестерня и шестерня : высокие передаточные числа и тихая работа
- Планетарная шпора : фиксированное передаточное число
- Коническая шпора : за весь срок службы без люфта
Особенности и преимущества
Характеристики | Преимущества |
---|---|
Нулевой люфт ≤ 0.1 угл. Мин. Не увеличивается в течение срока действия GPL | Высочайшая точность для вашего применения |
Наименьший потерянный ход ≤ 0,6 угл. Мин. | Превосходная точность даже при низком крутящем моменте |
Расчетный срок службы 20000 часов эксплуатации | Продлевает срок службы, снижает затраты на техническое обслуживание |
Высокая жесткость при опрокидывании и скручивании | Лучшая двухточечная точность |
Самый низкий уровень вибрации | Превосходное управление для приложений непрерывного движения |
Самый низкий момент отрыва | Лучшая управляемость, особенно на коротких дистанциях |
Максимальный КПД на всех скоростях> 90% | Более короткое время цикла и более низкая температура |
Самый низкий уровень шума <65 дБ | Может работать в непосредственной близости от операторов |
Самая низкая рабочая температура | Компоненты с увеличенным сроком службы и возможен режим работы S1 |
Выходная сторона полностью закрыта | Более простой монтаж, дополнительное уплотнение не требуется |
Harmonic Drive — Руководство по выбору шестерен для робототехники
Постоянное давление на инжиниринговые компании с целью сокращения затрат, повышения эффективности и повышения рентабельности инвестиций (ROI) подталкивает многих бизнес-лидеров к рассмотрению альтернатив системам двигателей с прямым приводом в виде различных решений с механической трансмиссией.Хотя системы зубчатых передач могут предлагать простоту, экономичность и гибкость, не всегда ясно, какой тип настройки лучше всего использовать. Здесь Грэм Макрелл, управляющий директор Harmonic Drive UK, исследует и критикует четыре основных типа передач.
Нет сомнений в том, что зубчатые передачи играют решающую роль в мире, в котором мы живем. От крупномасштабного глубоководного бурения нефтяных и газовых скважин и промышленного производства по всему миру до небольших приложений, таких как конвейерная лента на кассовых станциях в вашем регионе. супермаркет и даже крошечная коробка передач в дворниках вашего автомобиля, шестерни бесценны.
Поэтому неудивительно, что, если не учитывать кратковременный спад во время финансового кризиса 2009 года, мировой рынок коробок передач и мотор-редукторов в последнее десятилетие рос из года в год. Недавнее исследование Frost & Sullivan показало, что в 2013 году рынок получил выручку в размере 12,8 млрд долларов и, отчасти благодаря продолжающимся инновациям в ветроэнергетике, по оценкам, к 2017 году достигнет 15,67 млрд долларов.
В настоящее время рынок ориентирован на азиатско-тихоокеанский регион.Однако замедление роста китайской экономики из-за перепроизводства в последние годы, в дополнение к растущему спросу на высокоточные зубчатые передачи для вещания и авиакосмической промышленности, должно обеспечить рост в регионах Северной Америки и Европы.
Технология зубчатой передачи
Хотя сейчас есть множество электрических конфигураций на выбор, так было не всегда. До широкого распространения электрических инноваций в технологии асинхронных двигателей и появления приводов с регулируемой скоростью (VSD) регулирование выходной скорости системы осуществлялось с помощью шестерен.
Это означает, что конечная выходная скорость типичного двигателя с короткозамкнутым ротором, работающего со скоростью 1440 об / мин, может быть уменьшена по мере необходимости путем изменения передаточного числа редуктора. Это увеличивает гибкость, позволяя использовать один и тот же двигатель для различных скоростей без преобразователя частоты.
Теперь, конечно, можно управлять скоростью двигателя с помощью частотно-регулируемых приводов, однако привод не может заменить шестерни другие ключевые преимущества, умножение крутящего момента и согласование момента инерции, что позволяет относительно небольшому, маломощному двигателю двигаться и точно управлять большим нагрузки, что снижает эксплуатационные расходы и общий вес и размер машины.
Цилиндрическая шестерня
Попросите вашего ребенка нарисовать шестерню, и вы получите прямозубую шестерню — диск с радиально выступающими зубьями. Цилиндрические зубчатые колеса, используемые во всем: от стиральных машин, автомобилей и часов до промышленных режущих машин и электростанций, дешевы и просты в установке. Они обладают хорошей эффективностью передачи мощности и постоянным передаточным числом, с возможностью передачи большого количества энергии, до 50 000 кВт.
Для тех, кто использует этот базовый тип зубчатой передачи и близкую к ней косозубую шестерню, следует учесть несколько соображений.Обычно эти шестерни имеют значительный люфт, и хотя они могут быть оснащены компенсацией люфта, эта точность не сохраняется на протяжении всего срока службы шестерни без регулировки.
Кроме того, прямозубые цилиндрические зубчатые колеса могут быть шумными на высоких скоростях, а косозубые — в меньшей степени. Кроме того, хотя они имеют возможность изменять конфигурацию, они могут занимать большую площадь, особенно при высоких передаточных числах, отчасти из-за того, что каждый отдельный вал шестерни должен поддерживаться в собственных подшипниках.
Коническая шестерня может рассматриваться в том же семействе, что и прямозубая / косозубая шестерня, а также может иметь прямое или косозубое нарезание.Многие из вышеперечисленных соображений применимы, хотя прямоугольный характер этой передачи может помочь в приложениях, где пространство ограничено.
Червячная передача
Так называемый, из-за движения, подобного дождевому червю, червячный привод состоит из двух частей: винтовой червячной передачи и большого прямозубого червячного колеса. Червячная передача, расположенная перпендикулярно оси вращения, представляет собой компактное решение и может быть достигнута большая одноступенчатая передача, однако большие передаточные числа страдают от низкого КПД.
Конструкция червячной передачи означает, что большой полый вал можно просверлить в центральном цилиндре червячного колеса, что облегчает прокладку кабелей и коммуникаций. С некоторыми модификациями этот тип зубчатого колеса также может обеспечивать относительно хорошую точность.
Увеличивая давление на соприкасающиеся поверхности, можно уменьшить люфт, поперечное перемещение, наблюдаемое в системе зубчатой передачи. Тем не менее, это увеличивает износ зубьев, снижает эффективность и означает, что регулировка в течение эксплуатации часто необходима для поддержания точности коробки передач.
Планетарные передачи
Переходя к следующей категории, у нас есть планетарные передачи. Более известные как планетарные шестерни, они установлены таким образом, что несколько шестерен, обычно от трех до пяти, вращаются, как планеты, вокруг центральной солнечной шестерни, окруженной внешней кольцевой шестерней.
Планетарные передачи обеспечивают высокую удельную мощность, КПД более 95% и благодаря своей конструкции очень компактны. Точность может быть высокой, с минимальным люфтом до 1 угловой минуты.Комбинируя несколько ступеней зубчатой передачи, можно достичь высоких передаточных чисел, при этом максимальное одноступенчатое передаточное число обычно составляет 10: 1. Планетарные шестерни обычно дороже, чем косозубые, и могут требовать большего обслуживания из-за большего количества деталей.
Для более точных применений мы разработали здесь, в Harmonic Drive, ряд планетарных шестерен. Наша линейка HPG оснащена уникальной гибкой коронной шестерней, позволяющей предварительно нагружать зацепление между планетарной и кольцевой шестернями, что увеличивает точность до одной угловой минуты, и испытания показали, что эта система предварительной нагрузки обеспечивает превосходную повторяемость во времени.
Улучшенная серия HPGP имеет 4 планетарных шестерни, увеличивающих крутящий момент на дополнительный размер. Наша серия HPN представляет собой более обычную шестерню с косозубой передачей для увеличения крутящего момента и снижения шума, она доступна с точностью до 5 угловых минут.
Тензорезистор
Наивысшая точность и качество — это деформационно-волновой механизм, также известный как гармонический привод. Для приложений, требующих высочайшей плотности мощности и точности, необходима волновая передача.В таких требовательных приложениях, как управление движением в радиовещании, добыча нефти и газа, робототехника, аэрокосмическая промышленность, метрология и высокоточные промышленные станки, необходимы деформационно-волновые передачи.
Тензорезистор состоит из трех частей. Внешний круговой шлиц, фиксированное кольцо с зубьями шестерни внутри, зацепляется с внутренним Flexspline, гибким кольцом с зубьями шестерни снаружи, Flexspline меньше по диаметру, чем круговой шлиц, и имеет меньше зубьев, поэтому не зацепляется без третьего компонента, эллиптический генератор волн, установленный по центру, прикрепленный к входному валу.
Деформационно-волновая передача уникальна тем, что возможны очень высокие одноступенчатые передаточные числа, от 30: 1 до 320: 1, в том же пространстве, в котором планетарная передача может достигать передаточного числа только 10: 1. Этот впечатляющий подвиг становится еще более впечатляющим благодаря сохранению компактных размеров, очень небольшого веса, нулевого люфта, небольшого количества компонентов и очень высокого уровня крутящего момента.
Центральный вал можно даже расточить, чтобы получить полый вал максимально большого диаметра на концентрической передаче. Именно эти характеристики привели к тому, что НАСА выбрало Harmonic Drive для включения в марсоход.
Подготовка к работе
Понятно, что мир шестеренок сложнее, чем кажется на первый взгляд. Правильный выбор передачи для вашего конкретного приложения может радикально изменить эффективность работы, потребление энергии и, в конечном итоге, общую стоимость владения. Это становится все более важным аспектом процесса принятия решений по мере того, как мы движемся к ориентированным на экономию средств высокоточным приложениям.
Прямоугольный редуктор для передачи крутящего момента для робота, используемый в «умной» вспомогательной инвалидной коляске
Applied Resources — производитель Raptor, первого коммерчески доступного «умного» вспомогательного робота, одобренного Управлением по контролю за продуктами и лекарствами.Подразделение Phybotics компании Applied Resources Corp. представило роботизированную систему для инвалидных колясок Raptor в 2000 году. Raptor получил одобрение Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США в декабре 1999 года и вошел в историю в июне 2000 года как первая продажа оборудования, одобренного FDA. робот-инвалидная коляска в США. Raptor также продается в Нидерландах.
Raptor оказывает помощь людям с тяжелыми формами инвалидности, использующим инвалидные коляски с электроприводом. Колено манипулятора робота содержит редуктор под прямым углом от Torque Transmission, который обеспечивает двойной выход вала через расширенный входной вал.
Компания искала альтернативу тяжелым и дорогим металлическим коробкам передач, доступным на рынке, и обратилась за помощью в Torque Transmission. «Инженеры Torque Transmission оснастили наш стандартный RAB-1, прямоугольный редукторный редуктор со специальной зубчатой передачей, чтобы обеспечить больший крутящий момент для удовлетворения требований заказчика, — пояснил Джон Рамп, президент подразделения Torque Transmission. «В результате получился недорогой, очень легкий, но надежный привод», — заключил он.
«Коробка передач с трансмиссией крутящего момента была выбрана из-за ее небольшого габарита, легкого веса и высокого крутящего момента», — отметил Крейг Вундерли, главный инженер отдела прикладных ресурсов.«Мы подвергли правые угловые приводы строгим испытаниям, и эти приводы успешно прошли все наши испытания», — заключил он.
Угловой редуктор под углом
Прямоугольный угловой редуктор (RAB) трансмиссии крутящего моментаимеет размеры 3-21 / 32 дюйма x 3-15 / 16 дюйма x 1-1 / 4 дюйма в глубину и весит 12 унций. В нем используются шарикоподшипники и шестерни из закаленной стали с экранированной смазкой, он рассчитан на 1600 об / мин, а максимальная скорость 1/3 лошадиных сил составляет 3000 об / мин. RAB передачи крутящего момента также имеет выбор из одного или двух входов и передаточное число 1: 1 или 2: 1, правую или левую конфигурацию, и может работать в любом направлении.
Основные характеристики
- Низкая стоимость. Половина стоимости сопоставимых дисков в металлическом корпусе
- Выбор материалов корпуса и вала: — Соответствует RoHos
- Доступны нестандартные зубчатые колеса, длина корпуса и вала, а также материалы
- Увеличенный срок службы
- Меньший износ
- Улучшенный контакт зубьев
- Тихая работа
- Наиболее эффективная конструкция передачи мощности в условиях номинальной нагрузки
Типичные области применения прямоугольных угловых редукторов передачи крутящего момента охватывают широкий спектр применений, включая медицинское и физиотерапевтическое оборудование, упаковочное оборудование или любые другие приложения, требующие малой мощности, где требуется высококачественная, но компактная, легкая и экономичная передача энергии.
Узнать больше
Torque Transmission специализируется на системах привода с дробной мощностью, но не ограничивается ими, и может работать со всеми различными скоростями и передаточными числами двигателей. В Torque Transmission инженер-конструктор не привязан к конкретной конструкции. Вы найдете команду, готовую предложить решения.
Обратитесь в компанию Torque Transmission сегодня, чтобы мы смогли найти недорогую коробку передач, соответствующую вашим потребностям и вашему бюджету.
Читатели, интересующиеся коробкой передач для роботов, заинтересованы в следующих статьях по теме:
Планетарный поворот на 180 градусов | AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro | 1 Двигатель | Планетарный ввод Versa | 1 Скорость | Шкив | 2: 1 | Продукция VEXproWest Coast |
2 Шаровой рычаг переключения передач CIM | CIM, Mini CIM | 2 двигателя | 1/2 «шестигранник | 2 скорости | Шпора | 3.67: 1, 5,39: 1, 6,6: 1, 8,33: 1, 9,17: 1, 11,73: 1, 12,26: 1, 15: 1, 20,83: 1, 26,67: 1 | Робот SpaceVEXproWest Coast Products |
3 Шаровой рычаг переключения передач CIM | CIM, Mini CIM | 2 двигателя, 3 двигателя | 1/2 «шестигранник | 2 скорости | Шпора | 2,83: 1, 4,17: 1, 5: 1, 6,13: 1, 7,08: 1, 7,5: 1, 9,01: 1, 9,07: 1, 10,42: 1, 11,03: 1, 13,5: 1, 15,32: 1, 18,75 : 1, 19.61: 1, 24: 1, 26.04: 1, 33.33: 1 | Робот SpaceVEXproWest Coast Products |
57 Спорт | AM 9015, AM RedLine, NeveRest, RS-550, RS-775, RS-775pro | 1 Двигатель | 1/2 «шестигранник | 1 Скорость | Планетарный | 4: 1, 12: 1, 16: 1, 20: 1, 36: 1, 48: 1, 64: 1, 80: 1, 100: 1 | AndyMark |
Armabelt Drive | RS-775, RS-775pro | 1 Двигатель | Планетарный ввод Versa | 1 Скорость | Шкив | 1.1: 1, 1.8: 1, 3: 1, 3.4: 1, 4.5: 1, 5.6: 1, 5.7: 1, 7.5: 1, 8: 1, 9: 1, 9.4: 1, 10.2: 1, 11.4: 1, 12: 1, 13.2: 1, 13.6: 1, 15: 1, 16.9: 1, 17: 1, 18.2: 1, 18.8: 1, 21: 1, 22.6: 1, 22.7: 1, 23.9: 1, 27: 1, 28.2: 1, 28.4: 1, 30: 1, 30.1: 1, 30.7: 1, 31.8: 1, 34.1: 1, 36: 1, 37.6: 1, 39.5: 1, 39.8: 1, 40.9: 1, 45: 1, 45.4: 1, 47.1: 1, 48: 1, 50.8: 1, 51.1: 1, 52.7: 1, 55.7: 1, 56.5: 1, 56.8: 1, 60: 1, 63: 1, 65.9: 1, 67.8: 1, 71.6: 1, 75: 1, 75.3: 1, 79.5: 1, 81: 1, 84: 1, 84.7: 1, 90: 1, 92: 1, 92.2: 1, 94.1: 1, 102,2: 1, 105: 1, 108: 1, 113,6: 1, 118,6: 1, 120: 1, 131.7: 1, 135: 1, 147: 1, 150: 1, 152.4: 1, 169.4: 1, 188.2: 1, 189: 1, 210: 1, 243: 1, 270: 1, 300: 1 | Армабот |
Серия стандартных блоков 150 | AM 9015, RS-550, RS-775, RS-775pro | 1 двигатель, 2 двигателя | 1/2 «Круглый | 1 Скорость | Планетарный | 4: 1, 16: 1, 64: 1, 256: 1, 1024: 1 | BaneBots |
Серия стандартных блоков 220 | CIM, Mini CIM | 1 Двигатель | 1/2 «Круглый | 1 Скорость | Планетарный | 4: 1, 16: 1, 64: 1, 256: 1, 1024: 1 | BaneBots |
CIM Sport | CIM, Mini CIM | 1 Двигатель | 1/2 «шестигранник | 1 Скорость | Планетарный | 4: 1, 12: 1, 16: 1, 20: 1, 36: 1, 48: 1, 64: 1, 80: 1, 100: 1 | AndyMark |
CIM-ile | AM 9015, RS-550, RS-775, RS-775pro | 1 Двигатель | 8 мм (стиль CIM) | 1 Скорость | Шпора | 9.29: 1, 12.29: 1 | Робот SpaceVEXproWest Coast Products |
CIMple Box | CIM, Mini CIM | 2 двигателя | 1/2 «Круглый | 1 Скорость | Шпора | 4,67: 1 | AndyMark |
DeCIMate | AM RedLine | 2 двигателя | 1/2 «шестигранник | 1 Скорость | Шпора | 3,75: 1 | AndyMark |
Двойной 775 Спорт | AM Redline, RS-775, RS-775pro | 2 двигателя | 1/2 «шестигранник | 1 Скорость | Планетарный | 13: 1, 39: 1, 52: 1, 65: 1, 117: 1, 156: 1, 208: 1, 260: 1, 325: 1 | AndyMark |
EVO | CIM, Mini CIM | 2 двигателя, 3 двигателя | 1/2 «шестигранник, 1/2» круглый | 2 скорости | Шпора | 4.77: 1, 5,45: 1, 6: 1, 6,86: 1, 7,56: 1, 8,63: 1, 9,54: 1, 10,86: 1, 12: 1, 12,41: 1, 15,11: 1, 16,37: 1, 18,71: 1, 21,72: 1, 22,67: 1, 25,9: 1, 32,74: 1, 45,33: 1 | AndyMark |
Переключатель EVO для RedLine | AM RedLine | 2 двигателя, 3 двигателя, 4 двигателя | 1/2 «шестигранник | 2 скорости | Шпора | 13,58: 1, 28,33: 1 | AndyMark |
EVO Slim для RedLine | AM RedLine | 2 двигателя, 3 двигателя, 4 двигателя | 1/2 «шестигранник | 1 Скорость | Шпора | 13.58: 1, 17.71: 1, 20.46: 1, 28.33: 1 | AndyMark |
Hex Серия PG | AM 9015, RS-775, RS-775pro | 1 Двигатель | 1/2 «шестигранник, 3/8» шестигранник | 1 Скорость | Планетарный | 27: 1, 71: 1, 188: 1 | AndyMark |
Коническая коробка LJ | CIM, Mini CIM | 1 Двигатель | 1/2 «шестигранник, 3/8» шестигранник | 1 Скорость | Фаска | 1: 1, 2: 1 | AndyMark |
NeveRest Orbital 20 | NeveRest | 1 Двигатель | 6 мм D | 1 Скорость | Планетарный | 19.2: 1 | AndyMark |
Планетарное устройство NeveRest | NeveRest | 1 Двигатель | 6 мм D | 1 Скорость | Планетарный | 3,7: 1 | AndyMark |
NeveRest Sport | NeveRest | 1 Двигатель | Шестигранник 5 мм, D 6 мм | 1 Скорость | Планетарный | 4: 1, 16: 1, 20: 1, 64: 1, 81: 1, 104: 1, 256: 1 | AndyMark |
NeveRest Spur | NeveRest | 1 Двигатель | 6 мм D | 1 Скорость | Шпора | 20: 1, 40: 1, 60: 1 | AndyMark |
P60 | AM 9015, RS-550, RS-775, RS-775pro | 1 Двигатель | 1/2 «Круглый | 1 Скорость | Планетарный | 3: 1, 4: 1, 11: 1, 13: 1, 16: 1, 38: 1, 45: 1, 54: 1, 64: 1, 129: 1, 153: 1, 182: 1 | BaneBots |
P80 | CIM, Mini CIM | 1 Двигатель | 1/2 «Круглый | 1 Скорость | Планетарный | 3: 1, 4: 1, 9: 1, 12: 1, 16: 1, 27: 1, 36: 1, 48: 1, 64: 1, 81: 1, 108: 1, 144: 1, 192 : 1, 256: 1 | BaneBots |
PG188 | AM 9015, RS-775, RS-775pro | 1 Двигатель | 10 мм | 1 Скорость | Планетарный | 188: 1 | AndyMark |
PG27 | AM 9015, RS-775, RS-775pro | 1 Двигатель | 10 мм | 1 Скорость | Планетарный | 27: 1 | AndyMark |
PG71 | AM 9015, RS-775 | 1 Двигатель | 10 мм | 1 Скорость | Планетарный | 71: 1 | AndyMark |
PI SS CIM | CIM, Mini CIM | 2 двигателя | 1/2 «шестигранник | 1 Скорость | Шпора | 12.05: 1, 15.5: 1, 17.8: 1 | Plummer Robotics |
PI SS Triple CIM | AM Redline, RS-775, RS-775pro | 2 двигателя, 3 двигателя | 1/2 «шестигранник | 1 Скорость | Шпора | 25,8: 1, 29,6: 1, 40,5: 1 | Plummer Robotics |
PicoBox Duo | NeveRest | 2 двигателя | 6 мм D | 1 Скорость | Шпора | 1: 1, 1: 1.28, 1.28: 1 | AndyMark |
PicoBox GEO | Орбитальный мотор-редуктор NeveRest | 2 двигателя | 6 мм D | 1 Скорость | Шпора | 1: 1, 1: 1,28, 1,28: 1 | AndyMark |
PicoBox LEO | Орбитальный мотор-редуктор NeveRest | 1 Двигатель | 6 мм D | 1 Скорость | Шпора | 1: 1, 1: 1,28, 1,28: 1 | AndyMark |
PicoBox MEO | NeveRest | 1 Двигатель | 6 мм D | 1 Скорость | Шпора | 1: 1, 1: 1.28, 1.28: 1 | AndyMark |
Турбина PicoBox | NeveRest | 1 Двигатель | 6 мм D | 1 Скорость | Шпора | 1: 1, 1: 1,28, 1,28: 1 | AndyMark |
PicoBox Twin Turbo | NeveRest | 2 двигателя | 6 мм D | 1 Скорость | Шпора | 1: 1, 1: 1,28, 1,28: 1 | AndyMark |
PicoBox Uno | NeveRest | 1 Двигатель | 6 мм D | 1 Скорость | Шпора | 1: 1, 1: 1.28, 1.28: 1 | AndyMark |
RAW Box | CIM, Mini CIM | 2 двигателя | 1/2 «шестигранник | 1 Скорость | Червячная передача | 7,1: 1, 14,2: 1 | AndyMark |
Угловой привод | AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro | 1 Двигатель | 3/8 дюйма, шестигранник | 1 Скорость | Фаска | 1: 1 | Армабот |
МОМ Rocketbox | CIM, Mini CIM | 2 двигателя | 1/2 «шестигранник | 1 скорость, 2 скорости | Шпора | 5.95: 1, 7.31: 1, 8.45: 1, 10.71: 1, 12.71: 1 | AndyMark |
Редуктор с одинарным редуктором | CIM, Mini CIM | 1 Двигатель | 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник | 1 Скорость | Шпора | 5: 1, 5,38: 1, 6: 1, 6,55: 1 | Робот SpaceVEXproWest Coast Products |
Односкоростной, двойное понижение | CIM, Mini CIM | 2 двигателя | 1/2 «шестигранник | 1 Скорость | Шпора | 4.17: 1, 5,67: 1, 9,52: 1 | Робот SpaceVEXproWest Coast Products |
Односкоростной, одинарный редуктор | CIM, Mini CIM | 2 двигателя, 3 двигателя | 1/2 «шестигранник | 1 Скорость | Шпора | 5,33: 1, 6: 1, 7: 1 | Робот SpaceVEXproWest Coast Products |
Звуковой переключатель | CIM, Mini CIM | 2 двигателя | 1/2 «шестигранник, 1/2» круглый | 2 скорости | Шпора | 3.7: 1, 4,7: 1, 5,8: 1, 6: 1, 7,3: 1, 7,5: 1, 9,4: 1, 11,8: 1, 14,8: 1, 18,6: 1, 24: 1, 30: 1 | AndyMark |
SpinBox | CIM, Mini CIM | 1 Двигатель | 1/2 «Круглый | 1 Скорость | Шпора | 1: 1,21, 1: 1,67 | AndyMark |
SR Тонкий | CIM, Mini CIM | 2 двигателя | 1/2 «Круглый | 1 Скорость | Шпора | 5: 1, 5: 45: 1 | 221 Робототехнические системы |
SR Тонкий тройной | CIM, Mini CIM | 2 двигателя, 3 двигателя | 1/2 «Круглый | 1 Скорость | Шпора | 5: 1, 5: 45: 1 | 221 Робототехнические системы |
Super Shifter | CIM, Mini CIM | 2 двигателя | 1/2 « | 2 скорости | Шпора | 6: 1, 9.4: 1, 24: 1 | AndyMark |
Super Sonic Shifter | CIM, Mini CIM | 2 двигателя, 3 двигателя | 1/2 «шестигранник | 2 скорости | Шпора | 4,5: 1, 11,4: 1 | AndyMark |
Односкоростная трансмиссия SuperLight | CIM, Mini CIM | 2 двигателя | 1/2 «Круглый | 1 Скорость | Шпора | 5,95: 1, 6.94: 1, 7,14: 1, 8,45: 1, 9,87: 1, 10,71: 1, 12,5: 1, 12,75: 1, 14,88: 1 | 221 Робототехнические системы |
Трансмиссия SuperLight SuperShifter | CIM, Mini CIM | 2 двигателя | 1/2 «Круглый | 2 скорости | Шпора | 3,7: 1, 4,7: 1, 5,8: 1, 6: 1, 7,3: 1, 7,5: 1, 9,4: 1, 11,8: 1, 14,8: 1, 18,6: 1, 24: 1, 30: 1 | 221 Робототехнические системы |
TB3, 3-ступенчатый Toughbox | CIM, Mini CIM, RS-550 | 2 двигателя | 1/2 «Круглый | 1 Скорость | Шпора | 33.8: 1, 42,8: 1, 51: 1 | AndyMark |
Toughbox | CIM, Mini CIM | 2 двигателя | 1/2 «Круглый | 1 Скорость | Шпора | 5,95: 1, 6,94: 1, 8,45: 1, 9,87: 1, 10,71: 1, 12,5: 1, 12,75: 1, 14,88: 1 | AndyMark |
Toughbox Micro | CIM, Mini CIM | 1 Двигатель | 1/2 «шестигранник | 1 Скорость | Шпора | 5.95: 1, 8,45: 1, 10,71: 1, 12,75: 1 | AndyMark |
Toughbox Mini | CIM, Mini CIM | 2 двигателя | 1/2 «шестигранник, 1/2» круглый | 1 Скорость | Шпора | 5,95: 1, 8,45: 1, 10,71: 1, 12,75: 1 | AndyMarkStudica |
VersaDM | AM Redline, BAG, RS-550, RS-775, RS-775pro | 2 двигателя | Планетарный вход Versa, 1/2 дюйма, шестигранник, 3/8 дюйма, шестигранник, 8 мм (стиль CIM) | 1 Скорость | Фаска | 1: 1, 3.75: 1, 5,33: 1 | Продукция VEXWest Coast |
VersaPlanetary | AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro | 1 двигатель, 2 двигателя | 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник, 8 мм (стиль CIM) | 1 Скорость | Планетарный | 3: 1, 4: 1, 5: 1, 7: 1, 9: 1, 10: 1, 12: 1, 15: 1, 16: 1, 20: 1, 21: 1, 25: 1, 27 : 1, 28: 1, 30: 1, 35: 1, 36: 1, 40: 1, 45: 1, 49: 1, 50: 1, 63: 1, 70: 1, 81: 1, 90: 1 , 100: 1 | Робот SpaceVEXproWest Coast Products |
Планетарный привод Versa, 90 градусов | VersaPlanetary | 1 Двигатель | 1/2 «шестигранник, 3/8» шестигранник | 1 Скорость | Фаска | 1: 1 | Продукция VEXWest Coast |
VersaPlanetary Lite | AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro | 1 двигатель, 2 двигателя | 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник, 8 мм (стиль CIM) | 1 Скорость | Планетарный | 3: 1, 4: 1, 5: 1, 7: 1, 9: 1, 10: 1, 12: 1, 15: 1, 16: 1, 20: 1, 21: 1, 25: 1, 27 : 1, 28: 1, 30: 1, 35: 1, 36: 1, 40: 1, 45: 1, 49: 1, 50: 1, 63: 1, 70: 1, 81: 1, 90: 1 , 100: 1 | Робот SpaceVEXWest Coast Products |
WCP 2 CIM Перевернутая DS | CIM, Mini CIM | 2 двигателя | 1/2 «шестигранник | 2 скорости | Шпора | 1.03: 1, 1.11: 1, 1.20: 1, 1.31: 1, 1.32: 1, 1.33: 1, 1.42: 1, 1.43: 1, 1.54: 1, 1.55: 1, 1.68: 1, 1.69: 1, 1.71: 1, 1.84: 1, 1.89: 1, 1.94: 1, 1.99: 1, 2.04: 1, 2.09: 1, 2.18: 1, 2.21: 1, 2.26: 1, 2.36: 1, 2.41: 1, 2.43: 1, 2,47: 1, 2,51: 1, 2,54: 1, 2,56: 1, 2,62: 1, 2,71: 1, 2,75: 1, 2,76: 1, 2,83: 1, 2,93: 1, 2,99: 1, 3,00: 1, 3,03: 1, 3,09: 1, 3,20: 1, 3,26: 1, 3,26: 1, 3,26: 1, 3,32: 1, 3,51: 1, 3,53: 1, 3,57: 1, 3,57: 1, 3,81: 1, 3,85: 1, 3.85: 1, 3.87: 1, 4.07: 1, 4.15: 1, 4.16: 1, 4.17: 1, 4.19: 1, 4.22: 1, 4.38: 1, 4.45: 1, 4.48: 1, 4.51: 1, 4.55: 1, 4.71: 1, 4,75: 1, 4,79: 1, 4,85: 1, 4,89: 1, 5,08: 1, 5,18: 1, 5,19: 1, 5,22: 1, 5,29: 1, 5,33: 1, 5,39: 1, 5,50: 1, 5,63: 1, 5,67: 1, 5,78: 1, 5,80: 1, 5,88: 1, 6,00: 1, 6,09: 1, 6,16: 1, 6,22: 1, 6,29: 1, 6,33: 1, 6,64: 1, 6,65: 1, 6,74: 1, 6,86: 1, 6,86: 1, 7,19: 1, 7,35: 1, 7,42: 1, 7,48: 1, 7,49: 1, 7,65: 1, 7,68: 1, 7,84: 1, 7,99: 1, 8.06: 1, 8.13: 1, 8.24: 1, 8.27: 1, 8.66: 1, 8.74: 1, 8.76: 1, 8.93: 1, 8.96: 1, 9.44: 1, 9.49: 1, 9.53: 1, 9,54: 1, 9,62: 1, 9,74: 1, 9,78: 1, 10,14: 1, 10,27: 1, 10,35: 1, 10,36: 1, 10,91: 1, 10,92: 1, 11,13: 1, 11,22: 1, 11.75: 1, 11.83: 1, 12.14: 1, 12.24: 1, 12.73: 1, 12.91: 1, 13.21: 1, 13.89: 1, 14.14: 1, 14.22: 1, 14.40: 1, 15.23: 1, 15.41: 1, 15.51: 1, 16.46: 1, 16.50: 1, 16.81: 1, 16.81: 1, 17.73: 1, 18.00: 1, 18.33: 1, 18.67: 1, 19.21: 1, 20.10: 1, 20.95: 1, 21,78: 1, 23,38: 1, 23,76: 1, 25,18: 1, 27,28: 1, 29,76: 1, 30,31: 1, 32,64: 1, 35,36: 1 | Продукты Западного побережья |
WCP DS | CIM, Mini CIM | 2 двигателя, 3 двигателя | 1/2 «шестигранник | 2 скорости | Шпора | 3.53: 1, 3,8: 1, 4,12: 1, 4,4: 1, 4,49: 1, 4,74: 1, 5,13: 1, 5,6: 1, 6,25: 1, 6,73: 1, 7,29: 1, 7,95: 1, 12,85: 1, 13,85: 1, 15: 1, 16,36: 1 | Робот SpaceVEXproWest Coast Products |
WCP SS | CIM, Mini CIM | 2 двигателя, 3 двигателя | 1/2 «шестигранник | 1 Скорость | Шпора | 4,2: 1, 4,29: 1, 4,52: 1, 4,9: 1, 5,23: 1, 5,35: 1, 5,64: 1, 6,11: 1, 6,67: 1, 7,44: 1, 8,01: 1, 8,68: 1, 9,45 : 1, 9,64: 1, 10,38: 1, 11,25: 1, 12.27: 1, 15.31: 1, 16.48: 1, 17.86: 1, 19.48: 1 | Робот SpaceVEXproWest Coast Products |
Червячный редуктор | VersaPlanetary | 1 Двигатель | 3/8 дюйма, шестигранник | 1 Скорость | Червячная передача | 25: 1 | Практические части |
WormBox | CIM, Mini CIM | 1 Двигатель | 1/2 «Круглый | 1 Скорость | Червячная передача | 16: 1 | AndyMark |
Легкий комплект мотор-редуктора может снизить затраты на робота на
Легкий комплект мотор-редуктора может сократить расходы на роботов
- 04 февраля, 2021
Немецкий специалист по инженерным пластмассам igus разработал легкий и недорогой редуктор со встроенным двигателем и элементами управления, который, по его словам, может снизить стоимость коллаборативных и сервисных роботов.Комплект модульной коробки передач состоит из трибополимерного деформационно-волнового механизма в сочетании с бесщеточным двигателем постоянного тока с внешним ротором и контроллером, электроникой управления усилием и абсолютным энкодером.
Позже в этом году igus планирует использовать автоматическую коробку передач в новой версии своего недорогого робота Robolink ReBel , который будет еще меньше и более экономичным, чем текущая версия. «Наша цель — предложить ReBeL на рынке за 2900 евро, даже для небольших заказов», — говорит Александр Мюленс, руководитель отдела недорогой автоматизации igus.«Он должен выдерживать 2 кг, иметь радиус действия до 650 мм, а также собственный вес менее 10 кг и минимальное время работы в 2 миллиона циклов».
Компания также видит большой потенциал для коробки передач в роботизированных приложениях в таких областях, как сельское хозяйство, логистика, уход и автоматизированные кухни и бары.
«Мы видим рыночные возможности в роботах с общим весом менее 8 кг», — говорит Мюленс. «Это потому, что когда речь идет о робототехнике в недорогой автоматизации, всегда важен собственный вес, а не только полезная нагрузка и низкая цена.Легкие роботы легче транспортировать и могут более эффективно использоваться в транспортных системах без водителя, на седьмой оси роботов или, в ближайшем будущем, даже на дронах ».
Малый вес также является значительным преимуществом для коботов, поскольку меньшая масса означает, что при столкновении создаются меньшие силы. Встроенный двойной абсолютный энкодер нового редуктора можно использовать для определения сил, а также крутящего момента, а также для безопасного ограничения усилий с помощью тока двигателя. Энкодеры выполняют измерения перед и за шарниром, чтобы определять уровни сил и крутящего момента и реагировать соответствующим образом.
В прошлом году igus представила новое поколение трибо-волновых редукторов для пятой оси роботов. Не требующие смазки трибополимеры уменьшают трение и износ, что позволяет создавать компактные и экономичные конструкции. Шестерни деформационной волны, называемые drygear , могут использоваться на последней оси шарнирно-сочлененного манипулятора, линейных или треугольных роботов — например, перед захватами.
Новый модульный редуктор расширяет ассортимент, и igus заявляет, что его возможности plug-and-play позволят быстро реализовать «захватывающие» идеи коботов, не беспокоясь о силовой электронике.Он основан на генераторе трибо-волн и трибо-гибком кольце с внешними зубьями.
Интегрированный мотор-редуктор с волновым напряжением (вверху) и покомпонентное изображение (внизу)
Модульная коробка передач, которая будет доступна в размерах 80 и 105, будет представлена публике на виртуальной версии на Ганноверской ярмарке , которая состоится в апреле. Система также будет доступна на онлайн-рынке RBTX.com , где пользователи смогут комбинировать кинематику робота с компонентами обзора, безопасности или захвата.igus обещает, что все будет соответствовать как со стороны оборудования, так и со стороны программного обеспечения.
«Благодаря нашим недорогим решениям автоматизации мы позволяем инженерам-конструкторам экономически эффективно участвовать в будущем сервисной робототехники», — говорит Стефан Нирманн, вице-президент igus по недорогой автоматизации. «Это открывает пространство для новых идей в области автоматизации: роботов, которые могут разливать кофе в розничных магазинах или мыть посуду в домашних условиях. Коботы, которые можно использовать как в сфере ухода, так и в промышленности.”
igus : Twitter
«Революционная» пластиковая коробка передач «превзойдет металлические коробки»
«Революционная» пластиковая коробка передач «превзойдет металлические коробки»
- 21 июня, 2018
Genesis Robotics утверждает, что разработала первую в мире пластиковую коробку передач, которая превосходит металлические коробки передач. Беззазорная коробка, которую она называет усилителем крутящего момента Reflex, имеет в четыре раза больше зацепленных зубьев, чем обычный планетарный редуктор, что позволяет достичь аналогичного отношения крутящего момента к массе.А поскольку его части можно лить под давлением, производство должно быть проще и дешевле.
По словам технического директора канадской компании Джеймса Классена, «проблема» обычных планетарных редукторов заключается в том, что их подшипники и подшипники увеличивают вес, инерцию и стоимость.
Секрет «революционных» характеристик Reflex, объясняет он, — это пара неподвижных зубчатых колес (со встроенными подшипниками) по обе стороны от дисковой коробки передач. Коробка направляет симметричную передачу усилия от этих шестерен к центральному выходному венцу.Все силы уравновешены, а симметричная конструкция предотвращает крутильное отклонение планетарных шестерен, а также устраняет необходимость в водиле планетарной передачи и подшипниках планетарной передачи.
За счет исключения подшипников планетарные шестерни могут быть полыми, что снижает вес и создает небольшую сжимаемость в радиальном направлении. Это обеспечивает достаточно жесткую передачу крутящего момента в осевом направлении при небольшой радиальной гибкости.Это позволяет предварительно нагружать шестерни, что в сочетании с использованием конических зубьев устраняет люфт.
Небольшое изгибание планет в радиальном направлении также компенсирует любое расширение, вызванное теплом, позволяя им плавно работать при любой температуре.
«Уникальная конструкция коробки передач позволяет задействовать в четыре раза больше зубьев по сравнению с типичной металлической коробкой передач», — говорит Классен. «Пластик на четверть прочнее стали, поэтому с четырехкратным количеством зубьев мы получаем такое же соотношение крутящего момента к весу, но при гораздо более низких затратах.”
Genesis утверждает, что его коробка передач с нулевым люфтом, сформированная из легких, отлитых под давлением пластиковых деталей, будет обеспечивать такие же характеристики крутящего момента, что и металлические планетарные коробки передач.
Он описывает новый дизайн как «кульминацию 35 лет разработки».
Усилитель крутящего момента предлагает масштабируемый крутящий момент, размер и передаточное число, что позволяет адаптировать его к различным приложениям. Но главный интерес Genesis заключается в его потенциальной способности предоставлять недорогих высокопроизводительных роботов.
Коробка с обратным приводом может быть объединена с существующим двигателем Livedrive компании, который, как утверждается, имеет в три раза больший крутящий момент, чем любой другой двигатель, для создания безопасных и недорогих роботов-манипуляторов из литьевого пластика. с меньшим количеством деталей, которые будут соответствовать — или даже улучшать — характеристики обычных металлических манипуляторов роботов.
«Выходная линия по центру исключает острие ножниц на роботе и делает его более похожим на человеческую руку», — отмечает Классен. «В результате получается более безопасный, плавный и менее дорогой робот, потому что это гораздо более простая конструкция.”
Первоначально Genesis планирует предложить версию усилителя крутящего момента диаметром 160 мм и шириной 53,5 мм, весом 760 граммов, с номинальным крутящим моментом 44 Нм, максимальным крутящим моментом 87 Нм и передаточным числом около 30: 1. Масштабируемая технология может обеспечивать соотношение от 4: 1 до 400: 1.
Планетарные передачи усилителя крутящего момента симметричны, что исключает крутильные отклонения и необходимость в водиле и соответствующих подшипниках шестерни.
.