Posted in: Разное

Во время какого из тактов двигатель внутреннего: Во время какого из тактов двигатель внутреннего сгорания совершает полезную работу?

Рабочий цикл четырехтактного и двухтактного двигателей: описание и принцип работы

Процессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной смеси, сжатие, воспламенение и расширение газов, а также выпуск продуктов сгорания), обеспечивающая переход тепловой энергии, выделяемой при воспламенении одной порции смеси, непосредственно в работу. О том, что представляют собой рабочие циклы поршневых двигателей внутреннего сгорания, пойдет речь далее.

Что такое мертвые точки и такты ДВС

Количество этапов, входящих в один рабочий цикл ДВС (двигателя внутреннего сгорания), принято считать исходя из числа ходов поршня в цилиндре. Такие этапы получили название такты двигателя. Непосредственно ход поршня определяется его перемещением из одной крайней точки в другую. Они получили наименование мертвые, поскольку если в такой точке произойдет остановка поршня, он не сможет начать движение без внешнего воздействия. Простыми словами мертвые точки – это позиции, при которых движение в текущем направлении поршня прекращается и он начинает обратный ход.

Основные параметры работы ДВС
Основные параметры работы ДВСМертвые точки и ход поршня ДВС

Существуют две мертвые точки:

  • Нижняя (НМТ) – положение, при котором расстояние между поршнем и осью вращения коленвала минимально.
  • Верхняя (ВМТ) – положение, при котором цилиндр находится на максимальном удалении от оси вращения коленвала двигателя.

В англоязычной документации ВМТ обозначается как TDC (Top Dead Centre), А НМТ – BDC (Bottom Dead Centre).

Существуют двигатели, рабочий цикл которых может состоять из двух, а также из четырех тактов. Исходя из этого их разделяют на двухтактные и четырехтактные моторы.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень – выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска – управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска – управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания – осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал – управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм – переводит движение поршня во вращение коленчатого вала.
Такты ДВС Такты ДВС Рабочий цикл четырехтактного двигателя

Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закры

Перышкин Физика ГДЗ § 22. – Рамблер/класс

Хай, там же в параграфе все написано, как вы читаете? или ленитесь? 

§ 22. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
1. Двигатель внутреннего сгорания — это тепловой двигатель, топливо в котором сгорает прямо в цилиндре внутри самого двигателя. 
2. Простейший двигатель внутреннего сгорания состоит из цилиндра, в котором перемещается поршень, соединенный внизу шатуном с коленчатым валом. Два клапана в верхней части цилиндра открываются и закрываются автоматически в нужные моменты. Один клапан служит для подачи в цилиндр горючей смеси, воспламеняющейся от свечи, другой клапан выпускает отработавшие газы.
3. При сгорании горючей смеси в двигателе внутреннего сгорания сначала значительно повышается температура до 1600°C-l800°C и давление на поршень возрастает, газы, расширяясь, толкают поршень и коленчатый вал, совершая механиче­скую работу. Газы при этом охлаждаются, так как часть их внутренней энергии превращается в механическую энергию.
4. Рабочий цикл двигателя происходит за четыре хода (такта) поршня, при этом коленчатый вал делает два оборота.
5. Такты поршня имеют названия в соответствии с происходящими в них процессами: впуск, сжатие, рабочий ход и выпуск. Впуск — поршень движется вниз, в цилиндре создается разряжение, открывается клапан и в цилиндр поступает горючая смесь, клапан закрывается, коленчатый вал совершает пол-оборота. Сжатие — коленчатый вал продолжает поворот, поршень движется вверх и сжимает горючую смесь, она воспламеняется от искры и быстро сгорает. Рабочий ход — поршень под давлением газов опускается вниз, передавая толчок шатуну и коленчатому валу с маховиком при закрытых клапанах. В конце третьего такта открывается другой клапан для выпуска продуктов сгорания в атмосферу. Выпуск — поршень движется вверх, продукты сгорания выходят через клапан, в конце такта клапан закрывается.
6. Маховик, обладая значительной инерционностью, необходим для передачи движения поршню в следующих тактах.

Урок 25. тепловые двигатели. кпд тепловых двигателей — Физика — 10 класс

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

43. Тепловые двигатели

1126. Объясните причину вращения колеса (рис. 277). Какие преобразования энергии происходят при этом?
Колесо вращается за счет давления истекающего из трубки пара на его лопасти. Внутренняя энергия пара идет на работу по его расширению, которая, в свою очередь, идет на совершение работы по вращению колеса.

1127. Относится ли огнестрельное оружие к тепловым двигателям?
Да, поскольку при выстреле часть внутренней энергии топлива превращается в тепловую энергию снаряда.

1128. Какой вид энергии используется в установке, изображенной на рисунке 277; при выстреле из пушки?
В установке на рис. 277 используется энергия пара. При выстреле из пушки используется тепловая (внутренняя) энергия сгорающего взрывчатого вещества.

1129. Почему доливать воду в радиатор перегревшегося двигателя трактора следует очень медленно и только при работающем двигателе?
При быстром доливании воды в радиатор происходит процесс интенсивного парообразования, выделяется большое количество энергии. Двигатель выходит из строя.

1130. Выполняя домашнее задание, ученик записал: «К машинам с тепловыми двигателями относятся: реактивный самолет, паровая турбина, мопед». Дополните эту запись другими примерами.
К машинам с тепловым двигателем относятся: автомобиль, тепловоз.

1131. Выполняя задание, ученик записал: «Двигатель внутреннего сгорания применяется в мотосанях, бензопилах». Дополните эту запись другими примерами.
Двигатель внутреннего сгорания применяют в автомобилях, дизельных тепловозах.

1132. Почему двигатели внутреннего сгорания не используются в подводной лодке при подводном плавании?
В подводных лодках не используют двигатели внутреннего сгорания из-за недостатка воздуха для создания рабочей смеси двигателя.

1133. В каком случае газообразная горючая смесь в цилиндре двигателя внутреннего сгорания обладает большей внутренней энергией: в начале такта «рабочий ход» или в конце его?
Горючая смесь обладает большей внутренней энергией в начале такта «рабочий ход».

1134. В каком случае жидкое распыленное топливо в цилиндре двигателя внутреннего сгорания обладает большей внутренней энергией: к концу такта всасывания или к концу такта сжатия?
Горючая смесь обладает большей внутренней энергией в конце такта сжатия.

1135. Почему температура газа в двигателе внутреннего сгорания в конце такта «рабочий ход» ниже, чем в начале этого такта?
Во время такта «рабочий ход» расширяющийся газ совершает работу за счет внутренней энергии смеси. Ее температура понижается.

1136. Почему в паровой турбине температура отработанного пара ниже, чем температура пара, поступающего к лопаткам турбины?
Часть внутренней энергии поступающего в турбину пара идет на совершение механической работы по ее вращению.

1137. Зачем в цилиндры дизельного двигателя (двигателя с воспламенением топлива от сжатия) жидкое топливо подается в распыленном состоянии?
Распыленное топливо обладает большей поверхностью. Это способствует более полному сгоранию топлива.

1138. Во время каких тактов закрыты оба клапана в четырехтактном двигателе внутреннего сгорания?
Во втором и третьем такте.

1139. Отражается ли неполное сгорание топлива в двигателе внутреннего сгорания на его КПД; на окружающей среде?
КПД уменьшается; окружающая среда сильнее загрязняется.

1140. Первый гусеничный трактор конструкции А. Ф. Блинова, 1888 г., имел два паровых двигателя. За 1 ч он расходовал 5 кг топлива, у которого удельная теплота сгорания равна 30 • 10 6 Дж/кг. Вычислите КПД трактора, если мощность двигателя его была равна около 1,5 кВт.

43. Тепловые двигатели43. Тепловые двигатели

1141. В одной из паровых турбин для совершения полезной работы используется 1/5 часть энергии, выделяющейся при сгорании топлива, в другой — 1/4 часть. КПД какой турбины больше? Ответ обоснуйте.
КПД тем больше, чем больше часть полезной работы по отношению к затраченной. Поэтому КПД второй турбины больше.

1142. Вычислите КПД турбин, описанных в предыдущей задаче.

43. Тепловые двигатели43. Тепловые двигатели

1143. Определите КПД двигателя трактора, которому для выполнения работы 1,89 • 107 Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания 4,2 • 10 6 Дж/кг.

43. Тепловые двигатели43. Тепловые двигатели

1144. Двигатель внутреннего сгорания совершил полезную работу, равную 2,3 • 10 4 кДж, и при этом израсходовал бензин массой 2 кг. Вычислите КПД этого двигателя.

43. Тепловые двигатели43. Тепловые двигатели

1145. За 3 ч пробега автомобиль, КПД которого равен 25%, израсходовал 24 кг бензина. Какую среднюю мощность развивал двигатель автомобиля при этом пробеге?

43. Тепловые двигатели43. Тепловые двигатели

1146. Двигатель внутреннего сгорания мощностью 36 кВт за 1 ч работы израсходовал 14 кг бензина. Определите КПД двигателя.

43. Тепловые двигатели43. Тепловые двигатели

Глава 3d — Первый закон — Закрытые системы

Глава 3d — Первый закон — Закрытые системы — Двигатели с циклом Отто (обновлено 22 апреля 2012 г.)

Глава 3: Первый закон термодинамики для Закрытые системы

г) Цикл Отто стандарта воздуха (искровое зажигание) Двигатель

The Air Стандартный цикл Отто — идеальный цикл для Искровое зажигание (SI) двигатели внутреннего сгорания, впервые предложенные Николаус Отто более 130 лет назад, и который в настоящее время используется чаще всего автотранспорт.Следующая ссылка от Kruse Технологическое партнерство представляет описание четырехтактного двигателя Операция цикла Отто , включая короткую история Николауса Отто. Еще раз у нас отличные анимации производство Matt Keveney представляет как четырехтактный и двухтактный двигатель внутреннего сгорания с искровым зажиганием операция

Анализ цикла Отто очень похож на цикл дизельного двигателя, который мы анализировали в предыдущей версии . Раздел .Мы будем использовать идеал «стандартное» допущение в нашем анализе. Таким образом, рабочий жидкость — это фиксированная масса воздуха, совершающего полный цикл, который относился во всем как к идеальному газу. Все процессы идеальны, горение заменяется добавлением тепла к воздуху, а выхлоп — заменен процессом отвода тепла, который восстанавливает воздух в начальное состояние.

Самое существенное отличие идеального Цикл Отто и идеальный дизельный цикл — это метод зажигания топливно-воздушная смесь.Напомним, что в идеальном дизельном цикле чрезвычайно высокая степень сжатия (около 18: 1) позволяет воздуху достигать температура воспламенения топлива. Затем впрыскивается топливо так, чтобы процесс воспламенения происходит при постоянном давлении. В идеале Отто цикл: топливно-воздушная смесь вводится во время такта впуска и сжат до гораздо более низкой степени сжатия (около 8: 1) и является затем воспламеняется от искры. Возгорание приводит к внезапному скачку давление, в то время как объем остается практически постоянным.В продолжение цикла, включая расширение и выхлоп процессы по существу идентичны идеальным дизельным цикл. Считаем удобным разработать аналитический подход идеальный цикл Отто через следующую решенную задачу:

Решенная задача 3.7 An идеальный двигатель с воздушным стандартным циклом Отто имеет степень сжатия 8. При начало процесса сжатия рабочая жидкость на 100 кПа, 27 ° C (300 K) и 800 кДж / кг тепла во время процесс добавления тепла с постоянным объемом.Аккуратно нарисуйте давление-объем [ P-v ] диаграмму для этого цикла, и используя значения удельной теплоемкости воздуха при типичная средняя температура цикла 900K определить:

  • а) температура и давление воздуха в конце каждого процесса

  • б) сеть производительность / цикл [кДж / кг], и

  • c) тепловой КПД [η th ] этого цикла двигателя.

Подход к решению:

Первым шагом является построение диаграммы P-v полный цикл, включая всю необходимую информацию.Мы заметили что ни объем, ни масса не указаны, поэтому диаграмма и решение будет в конкретных количествах.

Мы предполагаем, что топливно-воздушная смесь представлена чистый воздух. Соответствующие уравнения состояния, внутренней энергии и адиабатический процесс для воздуха:

Напомним из предыдущего раздела, что номинальная Значения удельной теплоемкости, используемые для воздуха при 300K, составляют C v = 0,717 кДж / кг · K ,, и k = 1,4. Однако все они функции температуры, а с чрезвычайно высокой температурой диапазон, испытанный в двигателях внутреннего сгорания, можно получить существенные ошибки.В этой задаче мы используем типичный средний цикл температура 900K взята из таблицы Specific Теплоемкости воздуха .

Теперь мы проходим все четыре процесса, чтобы определить температуру и давление в конце каждого процесса, как а также о проделанной работе и тепле, передаваемом во время каждого процесса.

Обратите внимание, что давление P 4 (а также P 2 выше) также можно оценить из уравнения адиабатического процесса.Мы делаем это ниже в качестве проверки действительности, однако мы находим это больше По возможности удобно использовать уравнение состояния идеального газа. Любой метод удовлетворителен.

Мы продолжаем заключительный процесс определения отклонено тепла:

Обратите внимание, что мы применили уравнение энергии к все четыре процесса позволяют нам два альтернативных способа оценки «чистая производительность за цикл» и тепловой КПД, следующим образом:

Обратите внимание, что при использовании постоянных значений удельной теплоемкости более цикла мы можем определить тепловой КПД непосредственно из отношение удельных теплоемкостей k по формуле:


где r — степень сжатия

Быстрая проверка: Использование тепла и уравнения энергии работы, полученные выше, выводят это соотношение

Задача 3.8 Это является расширением Решенной задачи 3.7, в котором мы хотим использовать во всех четырех процессах номинальная стандартная удельная теплоемкость значения мощности для воздуха при 300К. Используя значения C v = 0,717 кДж / кг · К и k = 1,4, определите:

  • а) температура и давление воздуха в конце каждого процесса [P 2 = 1838 кПа, Т 2 = 689К, Т 3 = 1805K, P 3 = 4815 кПа, P 4 = 262 кПа, Т 4 = 786 КБ]

  • б) сеть выход / цикл [451.5 кДж / кг], и

  • c) тепловой КПД этого цикла двигателя. [η th = 56%]

______________________________________________________________________________________


Инженерная термодинамика, Израиль Уриэли под лицензией Creative Commons Attribution-Noncommercial-Share Alike 3.0 Соединенные Штаты Лицензия

.

Глава 3c — Первый закон — Закрытые системы

Глава 3c — Первый закон — Закрытые системы — дизельные двигатели (обновлено 19.03.2013)

Глава 3: Первый закон термодинамики для Закрытые системы

c) Дизельный цикл воздушного стандарта (Компрессионное зажигание) Двигатель

The Air Стандартный дизельный цикл — идеальный цикл для Компрессионное зажигание (CI) поршневые двигатели, впервые предложенные Рудольфом Дизель более 100 лет назад. Следующая ссылка от Kruse Технологическое партнерство описывает четырехтактный дизельный цикл работа в т.ч. история Рудольфа Дизеля.Четырехтактный дизельный двигатель обычно используется в автомобильных системах, тогда как более крупные морские системы обычно используйте двухтактный дизельный цикл . Еще раз у нас есть отличная анимация от Matt Кевени , представляя работу четырехтактный дизельный цикл .

Фактический цикл CI чрезвычайно сложен, поэтому в при первоначальном анализе мы используем идеальное «стандартное» допущение, в котором рабочее тело представляет собой фиксированную массу воздуха, испытывающего полный цикл, который рассматривается как идеальный газ.Все процессы идеальны, горение заменяется добавлением тепла к воздух, а выхлоп заменяется процессом отвода тепла, который восстанавливает воздух в исходное состояние.

Идеальный дизельный двигатель воздушного стандарта отдельные процессы, каждый из которых может быть проанализирован отдельно, как показан в P-V диаграммы ниже. Два из четырех процессов цикла адиабатические процессы (адиабатический = отсутствие передачи тепла), поэтому до мы можем продолжить, нам нужно разработать уравнения для идеального газа адиабатический процесс следующим образом:

Адиабатический процесс идеального газа (Q = 0)

Результатом анализа являются следующие три основных форм, представляющих адиабатический процесс:


где k — коэффициент теплоемкостей и имеет номинальное значение 1.4 в 300К по воздуху.

Процесс 1-2 — это процесс адиабатического сжатия. Таким образом, при сжатии температура воздуха увеличивается. процесс, а при большой степени сжатия (обычно> 16: 1) он достигнет температуры воспламенения впрыскиваемого топлива. Таким образом данный условия в состоянии 1 и степень сжатия двигателя, в для определения давления и температуры в состоянии 2 (при конец процесса адиабатического сжатия) имеем:

Работа W 1-2 , необходимая для сжатия газа показана как область под кривой P-V и оценивается как следует.

Альтернативный подход с использованием уравнения энергии использует преимущество адиабатического процесса (Q 1-2 = 0) приводит к гораздо более простому процессу:


(спасибо студентке Николь Блэкмор за то, что она рассказала мне об этой альтернативе подход)

Во время процесса 2-3 топливо впрыскивается и сгорает и это представлено процессом расширения при постоянном давлении. В состояние 3 («прекращение подачи топлива») процесс расширения продолжается адиабатически с понижением температуры до тех пор, пока не произойдет расширение полный.

Процесс 3-4, таким образом, представляет собой процесс адиабатического расширения. Общий объем работ по расширению W exp = (Ш 2-3 + Ш 3-4 ) и отображается как область под P-V диаграмму и анализируется следующим образом:

Наконец, процесс 4-1 представляет постоянный объем процесс отвода тепла. В реальном дизельном двигателе газ просто выходит из цилиндра и вводится свежий заряд воздуха.

Чистая работа W net , выполненная за цикл, составляет определяется по формуле: W net = (W exp + W 1-2 ), где, как и раньше, работа сжатия W 1-2 отрицательна (работа проделана по системе ).

В дизельном двигателе Air-Standard происходит ввод Q в за счет сжигания топлива, которое впрыскивается контролируемым образом, в идеале приводящий к процессу расширения при постоянном давлении 2-3 как показано ниже. При максимальном объеме (нижняя мертвая точка) сгоревшие газы просто истощаются и заменяются свежим зарядом воздуха. Это представлен эквивалентным процессом отвода тепла с постоянным объемом Q из = -Q 4-1 . Оба процесса анализируются следующим образом:

На этом этапе мы можем удобно определить КПД двигателя по тепловому потоку:

__________________________________________________________________________

В этом разделе резюмируются следующие проблемы:

Задача 3.4 А поршневой цилиндр без трения содержит 0,2 кг воздуха при 100 кПа. и 27 ° С. Теперь воздух медленно сжимается в соответствии с соотношением P V k = константа, где k = 1,4, до достижения конечного температура 77 ° C.

  • a) Набросок P-V диаграмма процесса относительно соответствующей постоянной температурные линии и указывают на этой диаграмме проделанную работу.

  • б) Использование основного определение границ выполненных работ определить границы работ выполнено в процессе [-7.18 кДж].

  • c) Используя уравнение энергии, определите тепла. передано в процессе [0 кДж] и убедитесь, что процесс находится в факт адиабатический.

Вывести все уравнения использовались начиная с с основным уравнением энергии для непроточной системы уравнение для изменения внутренней энергии идеального газа (Δu) основное уравнение для выполненной граничной работы и уравнения состояния идеального газа [ P.V = m.R.T ]. Использовать значения удельной теплоемкости определены при 300К для всего процесс.

Проблема 3.5 Учитывать ход расширения только стандартный дизельный двигатель Air Standard с компрессией коэффициент 20 и коэффициент отсечки 2. В начале процесса (впрыск топлива) начальная температура 627 ° C, а воздух расширяется при постоянном давлении 6,2 МПа до отсечки (объемное соотношение 2: 1). Впоследствии воздух адиабатически расширяется (без теплопередачи). пока не достигнет максимальной громкости.

  • a) Нарисуйте это процесс на P-v диаграмма, четко показывающая все три состояния.Укажите на схеме общая работа, проделанная в течение всего процесса расширения.

  • б) Определите температуры, достигнутые в конце постоянного давления (топливо впрыск) процесс [1800K], а также в конце процесса расширения [830K], и нарисуйте три соответствующие линии постоянной температуры на P-v диаграмма.

  • c) Определите общая работа, выполненная во время хода расширения [1087 кДж / кг].

  • г) Определите общее количество тепла, подаваемого в воздух. во время такта расширения [1028 кДж / кг].

Вывести все используемые уравнения исходя из уравнения состояния идеального газа и адиабатического процесса соотношения, основное уравнение энергии для замкнутой системы, внутренняя энергия и энтальпия изменяют соотношения для идеального газа, и базовое определение граничной работы, выполняемой системой (при необходимости). Используйте значения удельной теплоемкости, определенные при 1000K для всего процесс расширения, полученный из таблицы Specific Теплоемкости воздуха .

Решенная проблема 3.6 Идеальный двигатель с дизельным степень сжатия 18 и степень отсечки 2. В начале процесса сжатия рабочая жидкость находится при 100 кПа, 27 ° C (300 К). Определите температуру и давление воздуха в конце каждого процесса, чистый объем работы за цикл [кДж / кг] и термический КПД.

Обратите внимание, что номинальные значения удельной теплоемкости для воздуха при 300K используются C P = 1,00 кДж / кг.K, C v = 0.717 кДж / кг · K ,, и k = 1,4. Однако все они являются функциями температура, и с чрезвычайно высоким температурным диапазоном при работе с дизельными двигателями можно получить значительные ошибки. Один подход (который мы примем в этом примере) заключается в использовании типичного средняя температура на протяжении всего цикла.

Подход к решению:

Первым шагом является построение диаграммы, представляющей проблема, включая всю необходимую информацию. Мы замечаем, что не указаны ни объем, ни масса, поэтому диаграмма и решение будут быть в конкретных количествах.Самая полезная диаграмма для тепловой двигатель — P-v диаграмма полного цикла:

Следующим шагом является определение рабочей жидкости и определитесь с основными уравнениями или таблицами для использования. В этом случае рабочая жидкость — воздух, и мы решили использовать среднюю температура 900K на протяжении всего цикла для определения удельной теплоемкости значения емкости представлены в таблице Удельные теплоемкости воздуха .

Теперь мы проходим все четыре процесса, чтобы определять температуру и давление в конце каждого процесса.

Обратите внимание, что альтернативный метод оценки давление P 2 — это просто использовать уравнение состояния идеального газа, как показано ниже:

Любой из подходов удовлетворителен — выберите тот, который вам удобнее. Теперь продолжим с топливом процесс постоянного давления впрыска:



Обратите внимание, что даже если проблема запрашивает «net производительность за цикл »мы рассчитали только тепло в и разогреть.В случае с дизельным двигателем намного проще оценить значения тепла, и мы можем легко получить чистую работу из энергетический баланс за полный цикл выглядит следующим образом:

Вы можете удивиться нереально высокой температуре полученная эффективность. В этом идеализированном анализе мы проигнорировали многие эффекты потерь, существующие в практических тепловых двигателях. Мы начнем понять некоторые из этих механизмов потерь, когда мы изучаем Второй закон in Глава 5 .

______________________________________________________________________________

В части d) Закона Первый закон — Цикловые двигатели Отто

______________________________________________________________________________________


Инженерная термодинамика, Израиль Уриэли под лицензией Creative Общедоступное авторское право — Некоммерческое использование — Совместное использование 3.0 США Лицензия

.

Бензиновый двигатель | Британника

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, вырабатывающих энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением от электрической искры. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого возможного применения в силовых установках, наиболее важными из которых являются легковые автомобили, небольшие грузовики и автобусы, самолеты авиации общего назначения, подвесные и малые внутренние морские агрегаты, стационарные насосные агрегаты среднего размера, осветительные установки и т. станки и электроинструменты.Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих ручных инструментах для озеленения, таких как цепные пилы, кусторезы и воздуходувки.

Поперечный разрез V-образного двигателя. Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели можно сгруппировать в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, количество ходов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей. В поршневом двигателе давление, создаваемое сгоранием бензина, создает силу на головку поршня, которая перемещает цилиндр по длине возвратно-поступательным или возвратно-поступательным движением. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных возвратно-поступательными поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и таким образом выполнять работу.

бензиновые двигатели Типы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8. Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа используют четырехтактный или двухтактный цикл.

Типовая схема поршневой цилиндр бензинового двигателя. Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов рекуперации энергии процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция, впервые разработанная в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр за счет создаваемого таким образом частичного вакуума.Смесь сжимается, когда поршень поднимается на такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий ход, когда оба клапана все еще закрыты, а давление газа обусловлено расширением сгоревшего газа, давящим на головку или головку поршня. Во время такта выпуска восходящий поршень выталкивает отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех тактов поршня — впуска, сжатия, мощности и выпуска — и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания: четырехтактный цикл Двигатель внутреннего сгорания имеет четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень перемещается во время каждого хода, он поворачивает коленчатый вал. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Недостатком четырехтактного цикла является то, что завершается только половина тактов мощности по сравнению с двухтактным циклом ( см. Ниже ), и только половину такой мощности можно ожидать от двигателя данного размера при заданная рабочая скорость.Однако четырехтактный цикл обеспечивает более эффективную очистку выхлопных газов (продувку) и повторную загрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *