Posted in: Разное

Система охлаждения для чего предназначена для: как работает, зачем нужна, виды

Содержание

как работает, зачем нужна, виды

Система охлаждения двигателя автомобиля разработана для того, чтобы избежать перегрева ДВС. Во время работы двигатель непрерывно производит тепло и преобразует его в мощность. Это тепло получается при сжигании топлива в двигателе. Но в мире нет двигателя, который был бы на 100% эффективен. Всегда остается некоторое количество тепловой энергии, которая теряется в процессе работы.

Если не передать ее в атмосферу, это тепло будет перегревать двигатель, что приведет к его заклиниванию. При заклинивании из-за перегрева поршень расплавляется внутри цилиндра. Во избежание этой проблемы в автомобиле и стоит система охлаждения.

Что такое система охлаждения двигателя и как работает

По сути это система, интегрированная с двигателем. Она отводит избыточное тепло с помощью специальной жидкости.

В системе жидкостного охлаждения двигатель окружен водяными рубашками. С помощью насоса эта вода циркулирует в этой водяной рубашке.

Вода, текущая в этих рубашках, отводит тепло от двигателя. Эта горячая вода затем течет через радиатор, где охлаждается от холодного тепла, выдуваемого через вентилятор.

В этой системе вода отбирает тепло у двигателя, и охлаждается воздухом, а затем снова циркулирует в двигателе.

Это косвенный процесс охлаждения, когда фактическое охлаждение, то есть воздух, не охлаждает систему напрямую. При этом воздух охлаждает воду, а вода охлаждает двигатель.

Система жидкостного или непрямого охлаждения используется в больших двигателях, в таких как легковые и грузовые автомобили.

 

Преимущества жидкостной системы охлаждения

  1. Компактный дизайн.
  2. Обеспечивает равномерное охлаждение двигателя.
  3. Двигатель может быть установлен в любом месте автомобиля.
  4. Может использоваться как на малых, так и на больших двигателях.

Недостатки системы жидкостного охлаждения

  1. В ней водяная рубашка становится еще одной частью двигателя. При этом в случае выхода из строя системы охлаждения двигатель может получить серьезные повреждения.
  2. Она требует регулярного технического обслуживания и, таким образом, создает дополнительные расходы на обслуживания.

Система воздушного или прямого охлаждения

В системе прямого охлаждения двигатель охлаждается непосредственно с помощью воздуха, проходящего через него. Это такая же система охлаждения, которая используется для мотоциклетных двигателей.

В ней воздух находится в непосредственном контакте с двигателем, следовательно, она также известна как система прямого охлаждения.

Система воздушного охлаждения используется для небольших двигателей, таких как велосипеды, газонокосилки и т. д.

 

Преимущества системы воздушного охлаждения

  1. Конструкция двигателя становится проще.
  2. Ремонт легко в случае повреждений.
  3. Отсутствие громоздкой системы охлаждения облегчает обслуживание системы.
  4. Нет опасности утечки охлаждающей жидкости.
  5. Двигатель не подвержен заморозкам.
  6. Это автономное устройство, так как оно не требует радиатора, жатки, резервуаров и т.д.
  7. Установка системы воздушного охлаждения проста.

Недостатки двигателей воздушного охлаждения

  1. Их можно использовать только в местах, где температура окружающей среды ниже.
  2. Охлаждение не равномерное.
  3. Более высокая рабочая температура по сравнению с двигателями с водяным охлаждением.
  4. Производят больше аэродинамического шума.
  5. Удельный расход топлива выше.
  6. Более низкие максимально допустимые коэффициенты сжатия.
  7. Вентилятор, если он используется, потребляет почти 5% мощности, вырабатываемой двигателями.

Эффективная система охлаждения двигателя: какая она

Она должна быть способна отводить около 30% тепла, выделяемого двигателем, при этом поддерживая оптимальную рабочую температуру.

Она должна отводить тепло с большей скоростью, когда двигатель горячий, и снимать двигатель с меньшей скоростью, когда двигатель холодный.

Примечание: двигатели в автомобилях повышенной проходимости и внедорожниках необходимо охлаждать по крайней мере по двум причинам. Одна основана на температуре горящих газов в цилиндрах, превышающей температуру плавления материала блока и цилиндров.

Если не убрать тепло, двигатель может выйти из строя. Вторая причина – поддержание оптимальной температуры двигателя помогает поддерживать его эффективную работу (подумайте об экономии топлива) и оптимизирует объемную эффективность (подумайте о лошадиных силах).

Радиатор охлаждения двигателя

В то время как существуют разные типы радиаторов, распространенный тип называется радиатором с зазубренной трубкой. Он состоит из трубок (для переноса жидкости), к которым прикреплены кольца или ребра для рассеивания тепла.

Горячая вода подается по трубам в верхний резервуар (верх радиатора) с помощью водяного насоса. Охлажденная вода направляется из нижнего резервуара (нижняя часть радиатора) обратно в двигатель для циркуляции через блок двигателя через небольшие каналы.

Жидкость, проходящая через блок двигателя, помогает отводить тепло, в дополнение к дополнительному воздуху, пропускаемому через него вентилятором и при движении.

Помпа

Водяной насос обычно устанавливается в передней части двигателя и приводится в движение ремнем. Нижняя часть радиатора (нижняя емкость) соединена со стороной всасывания насоса.

Шпиндель насоса приводится в движение ремнем, который соединяется со шкивом, установленным на конце коленчатого вала. Назначение насоса — просто извлекать горячую и впрыскивать более холодную жидкость (часто смесь воды и охлаждающей жидкости на основе спирта).

Приводы вентилятора

Вентилятор радиатора прикрепляется с помощью шкива и ремня. Скорость его вращения определяется частотой вращения двигателя и механической конструкцией механизма шкива / ремня.

Вентиляторы для системы охлаждения

Вентиляторы различаются по многим параметрам, включая материал, из которого они состоят, и способ их изготовления или сборки, по диаметру, количеству лопастей, длине лопасти, шагу лопасти и типу ступицы. Материалы включают нейлон или пластик, металл и гибридные материалы, например, вентилятор Horton HTEC (термореактивный композит).

Формованные вентиляторы являются наиболее распространенными и интенсивно используются как на дорогах, так и вне дорог. Они изготавливаются из пластика или нейлона и имеют цельный дизайн.

Модульные вентиляторы обычно используются в условиях бездорожья и обеспечивают значительную гибкость конструкции. При этом в одной и той же втулке могут использоваться различные длины лезвий, их шаг, конфигурации и материалы для оптимизации производительности. Различные варианты ступиц увеличивают их пригодность для многих применений.

Металлические вентиляторы используются в внедорожных транспортных средствах, а также в транспортных средствах, предназначенных для дорог. Прочные и относительно легкие, они могут быть изготовлены по индивидуальному заказу с учетом точных требований к воздушному потоку, размеру, длине лопасти, ширине лопасти, типу кожуха, зазору наконечника, диапазону скоростей передаточного числа вентилятора и другим факторам.

Система охлаждения двигателя — устройство, принцип работы, конструкция

Назначение и характеристика

Системой охлаждения называется совокупность устройств, осуществляющих принудительный регулируемый отвод и передачу теплоты от деталей двигателя в окружающую среду.

Система охлаждения предназначена для поддержания оптимального температурного режима, обеспечивающего получение максимальной мощности, высокой экономичности и длительного срока службы двигателя.

При сгорании рабочей смеси температура в цилиндрах двигателя повышается до 2500 °С и в среднем при работе двигателя составляет 800…900°С. Поэтому детали двигателя сильно нагреваются, и если их не охлаждать, то будут снижаться мощность двигателя, его экономичность, увеличиваться изнашивание деталей и может произойти поломка двигателя.

При чрезмерном охлаждении двигатель также теряет мощность, ухудшается его экономичность и возрастает изнашивание.

Для принудительного и регулируемого отвода теплоты в двигателях автомобилей применяют два типа системы охлаждения (рисунок 1). Тип системы охлаждения определяется теплоносителем (рабочим веществом), используемым для охлаждения двигателя.

Рисунок 1 – Типы систем охлаждения

Применение в двигателях различных систем охлаждения зависит от типа и назначения двигателя, его мощности и класса автомобиля.

Жидкостная система охлаждения

В жидкостной системе охлаждения используются специальные охлаждающие жидкости — антифризы различных марок, имеющие температуру загустевания — 40 °С и ниже. Антифризы содержат антикоррозионные и антивспенивающие присадки, исключающие образование накипи. Они очень ядовиты и требуют осторожного обращения. По сравнению с водой антифризы имеют меньшую теплоемкость и поэтому отводят теплоту от стенок цилиндров двигателя менее интенсивно.

Так, при охлаждении антифризом температура стенок цилиндров на 15…20°С выше, чем при охлаждении водой. Это ускоряет прогрев двигателя и уменьшает изнашивание цилиндров, но в летнее время может привести к перегреву двигателя.

Оптимальным температурным режимом двигателя при жидкостной системе охлаждения считается такой, при котором температура охлаждающей жидкости в двигателе составляет 80 …100 °С на всех режимах работы двигателя.

Это возможно при условии, что с охлаждающей жидкостью уносится в окружающую среду 25…35 % теплоты, выделяющейся при сгорании топлива в цилиндрах двигателя. При этом в бензиновых двигателях величина отводимой теплоты больше, чем в дизелях.

На рисунке 2 приведена диаграмма распределения теплоты, выделяющейся при сгорании топлива в цилиндрах двигателей автомобилей при жидкостной системе охлаждения.

Рисунок 2 – Диаграмма распределения теплоты

Из диаграммы следует, что в механическую работу преобразуется 20…35% теплоты, уносится с отработавшими газами 35…40%, теряется на трение 5 % и уносится с охлаждающей жидкостью 25…35 % теплоты.

По сравнению с воздушной жидкостная система охлаждения более эффективная, менее шумная, обеспечивает меньшую среднюю температуру деталей двигателя, улучшение наполнения цилиндров горючей смесью и более легкий пуск двигателя при низких температурах, а также испол

Виды систем охлаждения и принцип их работы

⇐ ПредыдущаяСтр 3 из 39Следующая ⇒

Система охлаждения служит для поддержания оптимального теплового режима двигателя путем принудительного отвода теп­лоты от нагретых деталей и передачи этой теплоты окружающей среде.

В современных двигателях в полезную работу превращается лишь 23… 42 % теплоты, выделяющейся в цилиндрах двигателя, осталь­ная теплота уносится отработавшими газами, охлаждающей жид­костью или воздухом и затрачивается на трение, рассеивание в окружающую среду внешними поверхностями двигаггеля и др.

Теплота, используемая на выполнение полезной работы, а также ее затраты на указанные виды потерь составляют тепловой баланс двигаггеля.

Так как сгорание в двигателе происходит при высоких темпе­ратурах, достигающих 2200…2300’С, то без принудительного ох­лаждения такие детали, как цилиндр, поршень и направляющие втулки клапанов, нагревались бы до температуры, значительно« превышающей температуру воспламенения (вспышки) масла. Поэтому для поддержания нормального теплового режима рабо-, ты узлов и механизмов необходимо принудительно отводить теп­лоту от взаимодействующих деталей, не допуская их перегрева. Количество теплоты, которое должна отводить система охлажде-‘ ния, зависит от мощности и режимов работы двигателя.

При перегреве двигателя увеличиваются силы трения и изна­шивание деталей, уменьшаются тепловые зазоры, происходит нагарообразование, ухудшается наполнение цилиндров карбюра­торных двигателей горючей смесью, а дизелей — очищенным воз­духом. Однако при чрезмерном отводе теплоты возникает перео­хлаждение двигателя, которое вызывает изменение вязкостных свойств масла, что приводит также к увеличению изнашивания деталей и механических потерь на трение, снижению мощности и экономичности двигателя. Поэтому независимо от нагрузки дви­гателя, следует поддерживать его тепловой режим в пределах 85…95

вС.

В современных двигателях применяют воздушное или жидкост­ное охлаждение. При воздушном охлаждении через оребренные поверхности блока и головки цилиндров излишняя теплота отводит­ся потоком воздуха, создаваемым многолопастным вентилятором с устройством, регулирующим интенсивность охлаждения.

В воздушной системе охлаждения отсутствует радиатор, жидкост­ный насос, каналы и трубопроводы для охлаждающей жидкости, поэтому к преимуществам такой системы относятся простота кон­струкции, уменьшение массы, удобство обслуживания и, кроме того, исключается опасность размораживания двигателя зимой. Размораживание, т.е. замерзание воды в системе водяного охлаж­дения, приводит к образованию трещин в блоке цилиндров.

Несмотря на то, что система воздушного охлаждения обеспе­чивает условия для необходимого отвода теплоты от сильно на­гретых деталей, требуется сравнительно большая мощность дви­гателя для приведения в действие вентилятора и затрудняется пуск двигателя при низкой температуре из-за отсутствия возможности прогрева его горячей водой. Поэтому наибольшее распростране­ние получили жидкостные системы с принудительной циркуля­цией охлаждающей жидкости. Такие системы более эффективны в работе и вместе с пусковыми устройствами обеспечивают легкий пуск двигателя при отрицательных температурах окружающего воздуха и создают меньший шум при его работе.

В качестве охлаждающих жидкостей применяется вода или ее эти- ленгликолевые смеси — антифризы. Широкое распространение полу­чили смеси, замерзающие при низкой температуре: Тосол А-40М, ОЖ-40 «Лена» и Тосол А-65. Антифризы получают разбавлением технического этиленлшколя водой. Например, Тосол А-40М пред­ставляет собой 50 %-ную смесь воды с этиленгликолем, которая при температуре — 40 *С превращается не в лед, а в густую массу, не вызывающую повреждения блока цилиндров или радиатора.

Принципиальные схемы жидкостной системы охлаждения дви­гателей показаны на рис. 5.1. В зависимости от теплового состоя­ния двигателя циркуляция жидкости в системе происходит по большому или малому кругу (рис. 5.1, а) и обеспечивается насосом <9, который приводится в действие от шкива 18, соединенного через клиноременную передачу со шкивом коленчатого вала. При нормаль­ном тепловом режиме работы двигателя охлаждающая жидкость циркулирует по большому кругу. При этом клапан термостата 9 открыт и жидкость через патрубок 11 подается к верхнему бачку 13 радиатора /б, откуда по трубкам сердцевины радиатора она по­ступает в его нижний бачок 20 (направление движения жидкости показано стрелками).

Жидкость, проходящая через радиатор, охлаждается воздухом, подаваемым под напором вентилятором /9, и потоком воздуха, возникающим при движении автомобиля и регулируемым при помощи жалюзи (пласгин-сгворок) 17. Охлажденная жидкость через нижний патрубок 22 радиатора подается снова к насосу 8 и далее в рубашку охлаждения 7 блока и головки цилиндров.

5 6 7 S 9 10 11 1213 14 15

 

» I л

22 21 20

 

При пуске и работе непрогретого двигателя, когда температура охлаждающей жидкости ниже 72 ее циркуляция происходит по малому кругу. В этом случае жидкость не поступает в радиатор, так как клапан термостата 9 закрыт, а проходит по рубашке ох­лаждения 7 блока и головки цилиндров и через перепускной ка­нал 10, омывая термостат, снова поступает к насосу, обеспечивая тем самым быстрый прогрев холодного двигателя. По мере повы­шения температуры охлаждающей жидкости клапан термостата открывается, и она начинает циркулировать по большому кругу.

В V-образных двигателях ЗИЛ-508, -5081, ЗМЗ-511 и других (рис. 5 Л, б) жидкость через приливы 23 корпуса насоса подается в раструбы рубашки охлаждения левого и правого рядов цилиндров и далее через полость 24 впускного газопровода и термостат по­ступает в радиатор 16, а затем к насосу. Одновременно из полости трубопровода по гибкому шлангу 25 жидкость также поступает в рубашку охлаждения компрессора, а по шлангу 26 возвращается в насос.

Для нормальной работы двигателя температура охлаждающей жидкости при входе в водяную рубашку должна составлять 75…80*С, а при выходе из нее 85…95*С.

Для повышения температуры кипения воды в современных двигателях применяют закрытую систему охлаждения, которая может сообщаться с атмосферой при помощи пароотводной труб­ки /5только через паровоздушный клапан, расположенный в проб­ке 14 радиатора или в пробке 27 расширительного бачка 28, име­ющего сливной кран 21.

Температуру охлаждающей жидкости в системах охлаждения контролируют с помощью дистанционных магнитоэлектрических термометров, состоящих из указателей 5 и встроенных термодат­чиков 6. О перегреве жидкости в системе охлаждения сигнализи­рует контрольная лампочка, установленная на щитке приборов (у автомобилей ЗИЛ-431410, ГАЗ-3307 и -3110 «Волга») и со­единенная с термодатчиком 12, ввернутым в верхний бачок ради­атора.

Рис. 5Л. Схемы жидкостных систем охлаждения двигателей:

а — ЗМЗ-402; б — ЗИЛ-5081; / — кран; 2 — шланги; 3 — радиатор отопителя салона; 4 — распределительная трубе; 5 — указатель температуры: 6, 12 — термо- ддгчики соответственно головки блока и верхнего бачка радиатора; 7 — рубашка охлаждения; насос; 9 — термостат, /0— перепускной канал; //, 22 — соот­ветственно верхний и нижний патрубки радиатора; /Л 20 — соответственно аерхний и нижний бачки радиатора; 14, 27 — пробки соответственно радиатора и расширительного бачков; 15 — пароотводная трубка; 16 — радиатор; 17 — жалюзи; 18 — шкив; 19 — вентилятор; 21 — сливной кран; 23 — приливы корпу­са насоса; 24 — полость впускного газопровода; 25, 26 — шланга компрессора;

28 — расширительный бачок; 29 — тяга

В связи с тем что насос расположен в передней части двигателя, теплоотдача от задних цилиндров и их камер сгорания и других деталей ухудшается, так как к ним поступает уже подогретая передними цилиндрами охлаждающая жидкость. Поэтому в от­дельных конструкциях двигателей предусматривается циркуляция жидкости через распределительную трубу 4 или продольный ка­нал с отверстиями, направленными к наиболее нагретым дета­лям (выпускные клапаны, стенки камеры сгорания, свечи зажи­гания и т.д.).

і утютнотельная; 18 — манжета

Кроме основного назначения, систему охлаждения двигателя используют для отопления пассажирского помещения кузовов легковых автомобилей и автобусов, а также кабин грузовых авто­мобилей. Для этой цели в отопительной системе имеются специ­ально встроенные в салон кузова или кабины радиаторы 39 к ко­торым через кран 1 и шланги 2 нагретая жидкость подается из системы охлаждения двигателя.



Читайте также:

 

Конструкция и работа жидкостной системы охлаждения

⇐ ПредыдущаяСтр 2 из 4Следующая ⇒

В двигателях автомобилей применяется закрытая (герметичная) жидкостная система охлаждения с принудительной циркуляцией охлаждающей жидкости. Внутренняя полость закрытой системы охлаждения не имеет постоянной связи с окружающей средой, а связь осуществляется через специальные клапаны (при определенном давлении или вакууме), находящиеся в пробках радиатора или расширительного бачка системы. Охлаждающая жидкость в такой системе закипает при 110… 120 °С. Принудительная циркуляция охлаждающей жидкости в системе обеспечивается жидкостным насосом. Система охлаждения двигателя состоит из рубашки охлаждения головки и блока цилиндров, радиатора, насоса, термостата, вентилятора, расширительного бачка, соединительных трубопроводов и сливных краников. Кроме того, в систему охлаждения входит отопитель салона кузова автомобиля. При непрогретом двигателе основной клапан термостата 19 (рис. 11) закрыт, и охлаждающая жидкость не проходит через радиатор 10. В этом случае жидкость нагнетается насосом 17 в рубашку охлаждения 8 блока и головки цилиндров двигателя. Из головки блока цилиндров через шланг 3 жидкость поступает к дополнительному клапану термостата и попадает вновь в насос. Вследствие циркуляции этой части жидкости двигатель быстро прогревается. Одновременно меньшая часть жидкости поступает из головки блока цилиндров в обогреватель (рубашку) впускного трубопровода двигателя, а при открытом кране — в отопитель салона кузова автомобиля.

Рис. 11. Система охлаждения двигателя: 1, 2, 3, 5, 15, 18 — шланги; 4 — патрубок; 6 — бачок; 7, 9 — пробки; 8 — рубашка охлаждения; 10 — радиатор; 11 — кожух; 12 — вентилятор; 13, 14 — шкивы; 16— ремень; 17— насос; 19 — термостат

При прогретом двигателе дополнительный клапан термостата закрыт, а основной клапан открыт. В этом случае большая часть жидкости из головки блока цилиндров попадает в радиатор, охлаждается в нем и через открытый основной клапан термостата поступает в насос. Меньшая часть жидкости, как и при непрогретом двигателе, циркулирует через обогреватель впускного трубопровода двигателя и отопитель салона кузова. В некотором интервале температур основной и дополнительный клапаны термостата открыты одновременно, и охлаждающая жидкость циркулирует в этом случае по двум направлениям (кругам циркуляции). Количество циркулирующей жидкости в каждом круге зависит от степени открытия клапанов термостата, чем обеспечивается автоматическое поддержание оптимального температурного режима Двигателя. Расширительный бачок 6, заполненный охлаждающей жидкостью, сообщается с атмосферой через резиновый клапан, Установленный в пробке 7 бачка. Бачок соединен шлангом с наливной горловиной радиатора, которая имеет пробку 9 с клапанами. Бачок компенсирует изменения объема охлаждающей жидкости, и в системе поддерживается постоянный объем циркулирующей жидкости. Для слива охлаждающей жидкости из системы охлаждения имеются два сливных отверстия с резьбовыми пробками, одно из которых находится в нижнем бачке радиатора, а другое в блоке цилиндров двигателя. Температура жидкости в системе контролируется указателем, датчик которого установлен в головке блока цилиндров двигателя. Жидкостный насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. На двигателях автомобилей применяют лопастные насосы центробежного типа (рис. 12). Вал 6 насоса установлен в отлитой из алюминиевого сплава крышке 4 в двухрядном неразборном подшипнике 5. Подшипник размещен и зафиксирован в крышке стопорным винтом 8. На одном конце вала напрессована литая чугунная крыльчатка 1, а на другом конце — ступица 7и шкив 11 вентилятора 15. При вращении вала насоса охлаждающая жидкость через патрубок 10 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя. Уплотнительное устройство Р, состоящее из самоподжимной манжеты и графитокомпозитного кольца, установленное на валу насоса, исключает попадание жидкости в подшипник вала. Привод насоса и вентилятора осуществляется клиновым ремнем 12 от шкива 13, который установлен на переднем конце коленчатого вала двигателя. С помощью этого ремня также вращается шкив 14 генератора. Нормальную работу насоса и вентилятора обеспечивает правильное натяжение ремня. Натяжение ремня регулируют путем перемещения генератора в сторону от двигателя (показано на рис. 12 стрелкой а). Насос корпусом 2, отлитым из алюминиевого сплава, крепится к фланцу блока цилиндров в передней части двигателя.

 

 

Рис. 12. Жидкостный насос (а) и вентилятор (б) двигателя: 1 — крыльчатка; 2 — корпус; 3 — окно; 4 — крышка; 5 — подшипник; 6 — вал; 7 — ступица; 8 — винт; 9 — уплотнительное устройство; 10 — патрубок; 11, 13,14 — шкивы; 12 — ремень; 13 — вентилятор; 16 — накладка; 17 — болт

Рассмотрим устройство насоса, привод которого осуществляется зубчатым ремнем (рис. 13). Вал 4 насоса установлен в корпусе 5 из алюминиевого сплава в неразборном двухрядном шариковом подшипнике 3. Подшипник стопорится в корпусе винтом 2 и уплотняется специальным устройством 6, включающим в себя графитокомпозитное кольцо и манжету. На переднем конце вала напрессован зубчатый шкив 1 из спеченного материала, а на заднем конце — крыльчатка 8. В крыльчатке сделаны два сквозных отверстия 7, которые соединяют между собой полости с охлаждающей жидкостью, расположенные по обе стороны крыльчатки. Благодаря этим отверстиям выравнивается давление охлаждающей жидкости на крыльчатку с обеих сторон, что исключает осевые нагрузки на вал насоса при его работе. Вал насоса приводится во вращение через шкив 1 зубчатым ремнем привода распределительного вала от коленчатого вала. При вращении вала жидкость поступает к центру крыльчатки и под действием центробежной силы направляется в рубашку охлаждения двигателя. Насос крепится корпусом к блоку цилиндров двигателя через уплотнительную прокладку. Термостат способствует ускорению прогрева двигателя и регулирует в определенных пределах количество охлаждающей жидкости, проходящей через радиатор. Термостат представляет собой автоматический клапан. В двигателях автомобилей применяют неразборные двухклапанные термостаты с твердым наполнителем.

Рис. 13. Жидкостный насос двигателя: 1 — шкив; 2 — винт; 3 — подшипник; 4 — вал; 5 — корпус; 6 — уплотнительное устройство; 7 — отверстие; 8 — крыльчатка

Термостат (рис. 14) имеет два входных патрубка 1 и 11, выходной патрубок 6, два клапана (основной 8, дополнительный 2) и чувствительный элемент. Термостат установлен перед входом в насос охлаждающей жидкости и соединяется с ним через патрубок 6. Через патрубок 1 термостат соединяется с головкой блока цилиндров двигателя, а через патрубок 11 — с нижним бачком радиатора.

Рис. 14. Термостат

Чувствительный элемент термостата состоит из баллона 4, резиновой диафрагмы 5 и штока 9. Внутри баллона между его стенкой и резиновой диафрагмой находится твердый наполнитель 10 (мелкокристаллический воск), обладающий высоким коэффициентом объемного расширения. Основной клапан 8 термостата с пружиной начинает открываться при температуре охлаждающей жидкости более 80 °С. При температуре менее 80 °С основной клапан закрывает выход жидкости из радиатора, и она поступает из двигателя в насос, проходя через открытый дополнительный клапан 2 термостата с пружиной 3. При возрастании температуры охлаждающей жидкости более 80 С в чувствительном элементе плавится твердый наполнитель, и объем его увеличивается. Вследствие этого шток 9 выходит из баллона 4, и баллон перемещается вверх. Дополнительный клапан 2 при этом начинает закрываться и при температуре более 94 С перекрывает проход охлаждающей жидкости от двигателя к насосу. Основной клапан 8 в этом случае открывается полностью, и охлаждающая жидкость циркулирует через радиатор. Расширительный бачок служит для компенсации изменений объема охлаждающей жидкости при колебаниях ее температуры и для контроля количества жидкости в системе охлаждения. Он также содержит некоторый запас охлаждающей жидкости на ее естественную убыль и возможные потери. На автомобилях применяют полупрозрачные пластмассовые бачки с заливной горловиной, закрываемой пластмассовой пробкой. Через горловину система заполняется охлаждающей жидкостью, а через клапаны, размещенные в пробке, осуществляется связь внутренней полости бачка и системы охлаждения с атмосферой. В пробке расширительных бачков часто имеется один резиновый клапан, срабатывающий при давлении, близком к атмосферному. При сливе охлаждающей жидкости из системы пробку снимают с расширительного бачка. Расширительный бачок размещается в подкапотном пространстве отделения двигателя, где крепится к кузову автомобиля. Радиатор обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. На легковых автомобилях применяются трубчато-пластинчатые радиаторы.

Радиатор автомобиля (рис. 15, а) — неразборный, имеет вертикальное расположение трубок и горизонтальное расположение охлаждающих пластин. Бачки радиатора и трубки латунные, а охлаждающие пластины стальные, луженые. Трубки и пластины образуют сердцевину 5 радиатора. В верхнем бачке J радиатора имеется горловина 2, через которую систему охлаждения заполняют жидкостью. Горловина герметично закрывается пробкой J, имеющей два клапана — впускной 7 и выпускной 8. Выпускной клапан открывается при избыточном давлении в системе 0,05 МПа, и закипевшая охлаждающая жидкость через патрубок 6 и соединительный шланг выбрасывается в расширительный бачок. Впускной клапан не имеет пружины и обеспечивает связь внутренней полости системы охлаждения с окружающей средой через расширительный бачок и резиновый клапан в его пробке, который срабатывает при давлении, близком к атмосферному. Впускной клапан перепускает жидкость из расширительного бачка при уменьшении ее объема в системе (при охлаждении) и пропускает в расширительный бачок при увеличении объема (при нагревании жидкости). Радиатор установлен нижним бачком 4 на кронштейны кузова на двух резиновых опорах, а вверху закреплен двумя болтами через стальные распорки и резиновые втулки.

Рис. 15. Неразборный радиатор (а) и кожух (б) вентилятора двигателя: 1 — пробка; 2 — горловина; 3,4— бачки; 5 — сердцевина; 6 — патрубок; 7, 8 — клапаны; 9 — кожух; 10 — уплотнитель

Для направления воздушного потока через радиатор и более эффективной работы вентилятора за радиатором установлен стальной кожух 9 вентилятора (рис. 15, 6), состоящий из двух половин. Обе половины кожуха имеют резиновые уплотнители 10, которые уменьшают проход воздуха к вентилятору помимо радиатора и предохраняют от поломок кожух и радиатор при колебаниях двигателя на резиновых опорах крепления. Радиатор не имеет жалюзи и утепляется в случае необходимости специальным съемным чехлом-утеплителем. Радиатор автомобиля, приведенный на рис. 16, — разборный, с горизонтальным расположением трубок и вертикальным расположением охлаждающих пластин. Радиатор не имеет заливной горловины и выполнен двухходовым — охлаждающая жидкость входит в него и выходит через левый бачок, который разделен перегородкой. Бачки радиатора пластмассовые. Левый бачок 8 имеет три патрубка, через которые соединяется с расширительным бачком, термостатом и выпускным патрубком головки блока цилиндров. Правый бачок 1 имеет сливную пробку 10, в нем установлен датчик 3 включения вентилятора. К бачкам через резиновые уплотнительные прокладки Скрепится сердцевина 2радиатора. Она состоит из двух рядов алюминиевых круглых трубок и алюминиевых пластин с насечками. В части трубок вставлены пластмассовые турбулизаторы в виде штопоров. Двойной ход жидкости через радиатор, насечки на охлаждающих пластинах и турбулизаторы в трубках обеспечивают турбулентное движение жидкости и воздуха, что повышает эффективность охлаждения жидкости в радиаторе. Алюминиевая сердцевина и пластмассовые бачки существенно уменьшают массу радиатора. Радиатор установлен на трех резиновых опорах 9. Две опоры находятся снизу под левым и правым бачками, а третья опора — сверху. Резиновые опоры и прокладки между сердцевиной и бачками делают радиатор нечувствительным к вибрациям.

Рис. 16. Разборный радиатор (а) и электровентилятор (6) двигателя: 1, 8— бачки; 2 — сердцевина; 3 — датчик; 4 — прокладка; 5 — вентилятор; 6 — электродвигатель; 7 — кожух; 9 — опора; 10 — пробка

Вентилятор увеличивает скорость и количество воздуха, проходящего через радиатор. На двигателях автомобилей устанавливают четырех- и шестилопастные вентиляторы. Вентилятор 15 двигателя (см. рис. 12) — шестилопастный. Лопасти его имеют скругленные концы и расположены под утлом к плоскости вращения вентилятора. Вентилятор крепится накладкой 16 и болтами 17 к ступице и приводится во вращение от шкива коленчатого вала. На некоторых двигателях (см. рис. 16) применяется электровентилятор. Он состоит из электродвигателя 6 и вентилятора 5. Вентилятор — четырехлопастный, крепится на валу электродвигателя. Лопасти на ступице вентилятора расположены неравномерно и под углом к плоско

8. Муфта автоматического изменения частоты вращения вентилятора

Муфта вентилятора служит для охлаждения двигателя легкового автомобиля. При изменении температуры потока воздуха за радиатором, изменяется частота вращения вентилятора. Муфта вентилятора стоит на валу насоса охлаждающей жидкости автомобильного двигателя и автоматически поддерживает его тепловой режим.

Из преимуществ такой муфты можно отметить:

· Более низкий эксплуатационный расход топлива и малые потери мощности двигателя, необходимые для обслуживания вспомогательных агрегатов,

· Уменьшение уровня шума и увеличение срока службы ремня привода.

Задача охлаждения современных двигателей решается при помощи вентилятора. При системе жидкостного охлаждения вентилятор прогоняет воздух через радиатор, а при воздушном охлаждении — подает воздух, как охлаждающее тело, к нагретым частям двигателя. С момента появления вентиляторов конструкторы постоянно совершенствуют работу привода.

При резкой смене режимов работы двигателя, привод испытывает большие нагрузки, для устранения которых устанавливают гидравлические, фрикционные или упругие резиновые муфты.

На широко известных автобусах «Икарус» устанавливают фрикционную муфту вентилятора с пневматическим приводом – своего рода сцепление. Регулирование включения и отключения здесь осуществляется сжатым воздухом, в зависимости от температуры охлаждающей жидкости.

Созданы сложные системы, которые могут совершать плавную регулировку скорости вентилятора. На легковых автомобилях (БМВ, Мерседес), на некоторых грузовиках (ЗИЛ-4331), в приводе вентилятора стоит вискомуфта — вязкостная муфта вентилятора.

Муфта привода вентилятора: 1 — крышка; 2-корпус; 3 — вал; 4 -диск ведущий; 5 -шпилька крепления вентилятора; 6 -подшипник; 7 — компаунд;8-жидкость полиметил-силоксановая; 9 -перепускное отверстие.

Это устройство работает так: Пока двигатель не прогрет, рабочая полость муфты не заполнена. По мере прогревания мотора, тепловой датчик начинает открывать клапан, и силиконовая жидкость, находящаяся в резервной полости, начинает поступать в рабочую полость. Она проскальзывает между дисками, ее вязкость растет, и муфта начинает передавать вращающий момент. По мере повышения температуры, рабочая полость заполняется больше, и от этого, обороты вентилятора увеличиваются. Так осуществляется плавная регулировка работы вентилятора. Конструктивно, вискомуфта устроена таким образом, что при малых оборотах она немного проскальзывает, а при высоких оборотах – вентилятор заметно отстает. Это, позволяет на высокой скорости, когда обдув радиатора достаточен существенно экономить энергию (топливо).

В двигателе КамАЗ 740.30-260 стоит вентилятор, для привода которого применяется автоматически включаемая вязкостная муфта вентилятора, которая крепится к ступице вентилятора.

В работе такой муфты используется вязкостный принцип трения жидкости между ведомой и ведущей частями муфты. Здесь применяется силиконовая жидкость с высокой вязкостью. Эта муфта вентилятора неразборная, и поэтому не нуждается в техническом обслуживании во время эксплуатации. Муфта включается при достижении температуры воздуха выходящего из радиатора до 61 — 67 °С. Датчиком управления работы муфты служит биметаллическая термоспираль, которая и включает муфту.

Обороты вентиляторов, стоящих на тяжелых дизельных двигателях изменяются в зависимости от заполнения полости между ведущим и ведомым колесами гидравлической муфты. Бесступенчатое регулирование оборотов привода вентилятора производится автоматически. По мере изменения температуры охлаждающей жидкости, меняется количество масла, которое поступает из системы смазки двигателя. И в зависимости от величины заполнения полости между ведущим и ведомым колесами муфты, изменяются обороты вентилятора.

Гидромуфта используется и на таких двигателях с воздушным охлаждением, как дизели марки «Дойц», которые стоят на грузиках «Магирус». Здесь терморегулятор, на основании величины температуры воздуха на выходе из системы охлаждения, и температуры выхлопных газов, управляет подачей масла в муфту. Работа этой системы зависит также и от величины температуры масла — при ее росте — вязкость масла снижается, а значит, горячего (в жидком виде) масла в рабочую полость поступает больше.



Читайте также:

 

Система охлаждения

Система охлаждения предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался.

Если не менять охлаждающую

жидкость во время , это приведет к повышенному…

Требования к системе охлаждения:

• автоматическое поддержание оптимального теплового режима в двигателе, независимого от режима работы и внешних условий;
• быстрый прогрев двигателя до рабочей температуры;
• длительное сохранение теплоты после остановки двигателя;
• малые энергетические затраты, связанные с приводом агрегатов системы охлаждения.


Сгорание горючей смеси сопровождается выделением значительного количества теплоты. Если двигатель не охлаждать или охлаждать недостаточно, го его детали могут нагреться до высокой температуры, а это уменьшает их прочность и наполнение цилиндров, ухудшает условия работы смазочной системы вследствие снижения вязкости перегретого масла, ускоряет срабатывание присадок к маслам и увеличивает количество отложений и нагара на деталях.

«Большинство автомобильных двигателей имеют жидкостные системы охлаждения закрытого типа» .

Жидкостная система охлаждения

Жиддкостная система охлаждения более инерционна, двигатель медленно прогревается, но и медленно остывает. Кроме того, большая теплоемкость охлаждающей жидкости обеспечивают интенсивный и равномерный теплоотвод и меньшую температуру деталей.

Теплота, отводимая от двигателей, используется для подогрева впускного трубопровода и улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду.

Приборы системы охлаждения:

радиатора 3, вентилятора 1, жидкостного насоса 8, рубашки охлаждения блока цилиндров, рубашки охлаждения головки блока цилиндров, термостата 10, патрубков 6,17 шлангов 9, расширительного бачка, приборов контроля температуры жидкости 13, сливных краников 18, 19.

Работа системы охлаждения

Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому.

По малому кругу жидкость циркулирует при пуске холодною двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний патрубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса.

По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса.

Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров приводит к коррозии. В отрабатавших газах повышается содержание углеводородов не сгоревшего топлива и высокотоксичных альдегидных соединений.
Принудительный отвод теплоты от деталей двигателя осуществляется с помощью жидкости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения.

Радиатор является теплообменником системы охлаждения, где поступающая из двигателя жидкость передаст теплоту потоку воздуха.

Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину ра­диатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком. Пароотводная трубка за­глублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов тру­бок, впаянных в верхний и нижний бачки. К трубкам крепятся гонкие ох­лаждающие пластины или гофрированные ленты, изготовленные из лату­ки, алюминия или красной меди.

Пробка заливной горловины в закрытых системах жидкостного охлажде­ния имеет два предохранительных клапана с уплотнительными резиновы­ми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давленияв системе против атмосферного не более чем на 0,01 МПа.

При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или поло­стью расширительного бачка.

Жалюзи устанавливаются перед радиатором, с их помощью регулирует­ся количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных иди горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси. Жалюзи прикрепляют к каркасу радиатора или к его наружной облицовке. Управление створками осущест­вляется вручную или с помощью устройства с термостатом.

Жидкостной насос создаст в системе охлаждения принудительную цир­куляцию жидкости. Применяют одноступенчатые жидкостные насосы цен­тробежного типа. Привод насоса, как правило, работает от шкива коленча­того вала посредством клиноременной передачи.

Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей манжеты, двух латунных обойм, резиновой манжеты» уплотняющей шайбы ипружинного кольца. Вал насоса вращается на двух шарикоподшипниках.

Центробежные насосы одноступенчатого типа, рассчитанные на давле­ние и 0,04 —0,1 МПа, отличаются компактностью и обеспечивают доста­точную подачу жидкости при сравнительно больших зазорах между крыль­чаткой и стенками корпуса.

Вентилятор служит для создания воздушного потока, проходящего че­рез сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.

Обслуживание системы охлаждения гарантия нормальной работы вашего двигателя.

 

 

Устройство системы охлаждения двигателя

Система охлаждения предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался.

Если не менять охлаждающую

жидкость во время , это приведет к повышенному…

Требования к системе охлаждения:

• автоматическое поддержание оптимального теплового режима в двигателе, независимого от режима работы и внешних условий;
• быстрый прогрев двигателя до рабочей температуры;
• длительное сохранение теплоты после остановки двигателя;
• малые энергетические затраты, связанные с приводом агрегатов системы охлаждения.


Сгорание горючей смеси сопровождается выделением значительного количества теплоты. Если двигатель не охлаждать или охлаждать недостаточно, го его детали могут нагреться до высокой температуры, а это уменьшает их прочность и наполнение цилиндров, ухудшает условия работы смазочной системы вследствие снижения вязкости перегретого масла, ускоряет срабатывание присадок к маслам и увеличивает количество отложений и нагара на деталях.

«Большинство автомобильных двигателей имеют жидкостные системы охлаждения закрытого типа» .

Жидкостная система охлаждения

Жиддкостная система охлаждения более инерционна, двигатель медленно прогревается, но и медленно остывает. Кроме того, большая теплоемкость охлаждающей жидкости обеспечивают интенсивный и равномерный теплоотвод и меньшую температуру деталей.

Теплота, отводимая от двигателей, используется для подогрева впускного трубопровода и улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду.

Приборы системы охлаждения:

радиатора 3, вентилятора 1, жидкостного насоса 8, рубашки охлаждения блока цилиндров, рубашки охлаждения головки блока цилиндров, термостата 10, патрубков 6,17 шлангов 9, расширительного бачка, приборов контроля температуры жидкости 13, сливных краников 18, 19.

Работа системы охлаждения

Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому.

По малому кругу жидкость циркулирует при пуске холодною двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний патрубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса.

По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса.

Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров приводит к коррозии. В отрабатавших газах повышается содержание углеводородов не сгоревшего топлива и высокотоксичных альдегидных соединений.
Принудительный отвод теплоты от деталей двигателя осуществляется с помощью жидкости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения.

Радиатор является теплообменником системы охлаждения, где поступающая из двигателя жидкость передаст теплоту потоку воздуха.

Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину ра­диатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком. Пароотводная трубка за­глублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов тру­бок, впаянных в верхний и нижний бачки. К трубкам крепятся гонкие ох­лаждающие пластины или гофрированные ленты, изготовленные из лату­ки, алюминия или красной меди.

Пробка заливной горловины в закрытых системах жидкостного охлажде­ния имеет два предохранительных клапана с уплотнительными резиновы­ми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давленияв системе против атмосферного не более чем на 0,01 МПа.

При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или поло­стью расширительного бачка.

Жалюзи устанавливаются перед радиатором, с их помощью регулирует­ся количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных иди горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси. Жалюзи прикрепляют к каркасу радиатора или к его наружной облицовке. Управление створками осущест­вляется вручную или с помощью устройства с термостатом.

Жидкостной насос создаст в системе охлаждения принудительную цир­куляцию жидкости. Применяют одноступенчатые жидкостные насосы цен­тробежного типа. Привод насоса, как правило, работает от шкива коленча­того вала посредством клиноременной передачи.

Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей манжеты, двух латунных обойм, резиновой манжеты» уплотняющей шайбы ипружинного кольца. Вал насоса вращается на двух шарикоподшипниках.

Центробежные насосы одноступенчатого типа, рассчитанные на давле­ние и 0,04 —0,1 МПа, отличаются компактностью и обеспечивают доста­точную подачу жидкости при сравнительно больших зазорах между крыль­чаткой и стенками корпуса.

Вентилятор служит для создания воздушного потока, проходящего че­рез сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.

Обслуживание системы охлаждения гарантия нормальной работы вашего двигателя.

 

 

8 основных проверок системы охлаждения и способы их выполнения

Чтобы ваша уличная машина, маслкар или даже ежедневный водитель не перегревалась, важно поддерживать правильную работу системы охлаждения .

Мы провели восемь основных проверок системы охлаждения, чтобы помочь вашей поездке пережить лето.

Проверить уровень охлаждающей жидкости

Само собой разумеется, что вам нужно необходимое количество охлаждающей жидкости в вашей системе охлаждения, чтобы не отставать от летней жары.

У некоторых автомобилей есть расширительный бачок охлаждающей жидкости; другие нет. Если в вашем легковом или грузовом автомобиле есть расширительный бачок, вы можете снять крышку с расширительного бачка и при необходимости добавить смесь воды и антифриза . Наполните бак до отметки холодного или горячего уровня, в зависимости от состояния двигателя.

Если расширительный бачок не имеет съемной крышки — или если в вашем автомобиле вообще нет расширительного бачка, — необходимо снять крышку радиатора, чтобы проверить уровень охлаждающей жидкости.Чтобы безопасно снять колпачок, нажмите и поворачивайте в сторону предохранителя, пока давление не будет сброшено. Затем полностью снимите крышку.

ВНИМАНИЕ: Никогда не снимайте крышку радиатора с горячего двигателя!

Кипящая охлаждающая жидкость или пар могут вылиться из заливной горловины и причинить вам вред.

Проверьте свой антифриз на стойкость

Используя ареометр , вы можете проверить прочность имеющегося у вас антифриза. Ареометр позволяет отбирать небольшое количество охлаждающей жидкости из вашей системы и показывает точку замерзания охлаждающей жидкости.

Существует несколько различных типов ареометров, включая поплавковые и шаровые ареометры. Как вы уже догадались, в поплавковом ареометре используется поплавок для определения прочности охлаждающей жидкости. Когда вы всасываете охлаждающую жидкость, сжимая резиновую грушу ареометра, поплавок будет выступать из охлаждающей жидкости. Чем выше из охлаждающей жидкости торчит поплавок, тем сильнее охлаждающая жидкость. Термометр и шкала на боковой стороне ареометра показывают, насколько точно должна опуститься температура, прежде чем замерзнет.

В шаровом ареометре используется набор шаров — обычно четыре или пять — для определения прочности охлаждающей жидкости. Чем сильнее охлаждающая жидкость, тем больше шариков будет плавать.

Проверьте свой термостат

Есть несколько способов убедиться, что ваш термостат работает правильно.

Один из старых способов — поставить термостат в раствор охлаждающей жидкости. Затем вы можете нагреть охлаждающую жидкость примерно на 25 градусов по Фаренгейту выше температуры, указанной на термостате. В этот момент термостат должен открыться.После того как раствор остынет до температуры примерно на 10 градусов по Фаренгейту ниже значения на термостате, вы можете снова погрузить устройство в раствор охлаждающей жидкости. Теперь он должен полностью закрываться.

Если термостат не открывается и не закрывается должным образом, замените его.

Проверить шланги и соединения

Треснувшие или изношенные шланги и плохие соединения могут привести к попаданию воздуха в систему охлаждения.

Чтобы проверить шланги, просто сожмите их. Шланги не должны легко складываться.Вам необходимо заменить все мягкие, гнилые или опухшие шланги. Все соединения следует проверить на герметичность.

Проверить утечку выхлопных газов в систему охлаждения

Выхлопные газы в системе охлаждения могут вызвать коррозию радиатора и других компонентов системы охлаждения. Это также может быть признаком неисправной прокладки головки блока цилиндров, из-за которой выхлопные газы чаще всего попадают в систему охлаждения.

Анализатор выхлопных газов может обнаруживать выхлопные газы из системы охлаждения.Просто удерживайте зонд анализатора над заливной горловиной (со снятой крышкой), и анализатор обнаружит любые присутствующие газы. Не помещайте зонд прямо в охлаждающую жидкость!

Проверьте свою систему охлаждения под давлением

Вы можете обнаружить утечки в системе охлаждения с помощью прибора для проверки давления в радиаторе . Вот как это обычно работает:

  1. Заполните радиатор примерно на 1/2 дюйма ниже нижней части заливной горловины.
  2. Протрите уплотнительную поверхность и прикрепите тестер.
  3. Включите насос прибора для проверки давления, чтобы создать давление не более чем на 3 фунта на кв. Дюйм выше, указанного производителем.
  4. Если давление стабильно; система не протекает.
  5. Если давление падает; есть утечки.
  6. Проверьте иглу манометра при прогретом двигателе и примерно 3000 об / мин. Колеблющаяся стрелка может указывать на утечку выхлопных газов.

Проверка давления крышки радиатора

Вы также можете использовать манометр и специальный адаптер для проверки крышки радиатора.Если крышка не может удерживать номинальное давление, это может привести к потере охлаждающей жидкости и возможному перегреву двигателя. Вам нужно будет заменить крышку радиатора.

Проверка приводного ремня

Проверьте ремень водяного насоса на износ и натяжение.

Если вы слышите пронзительный визг, возможно, вы имеете дело с ослабленным или соскальзывающим ремнем. Водяной насос не сможет вращаться достаточно быстро, чтобы обеспечить надлежащую циркуляцию охлаждающей жидкости. Кроме того, генератор может вращаться недостаточно быстро, чтобы поддерживать заряд аккумулятора.

Чтобы проверить клиновой ремень (всегда при выключенном двигателе), проверните ремень в пальцах и поищите небольшие трещины, смазку, остекление, разрывы или трещины. Если вы заметили любую из этих характеристик, замените ремень. А если у вас два клиновых ремня, заменяйте оба одновременно, чтобы обеспечить правильную работу и износ.

При осмотре змеевикового ремня обратите внимание на чрезмерный износ, остекление или потертые шнуры. Если вам необходимо установить новый змеевиковый ремень, убедитесь, что все ребра входят в канавки шкива.Кроме того, не забудьте удалить весь старый материал ремня, который может застрять в канавках шкива.

Большинство змеевиковых ремней имеют натяжитель для поддержания надлежащего натяжения ремня, и вы также можете посмотреть на натяжитель на предмет признаков износа. Чтобы обеспечить бесперебойную и эффективную работу, мы рекомендуем заменять натяжитель, если ваш двигатель пробегает более 100 000 миль.

Наконец, любые заржавевшие шкивы следует заменить, чтобы предотвратить преждевременный износ ремня.

Автор: Дэвид Фуллер Дэвид Фуллер — управляющий редактор OnAllCylinders.За свою 20-летнюю карьеру в автомобильной промышленности он освещал множество гонок, шоу и отраслевых мероприятий, а также написал статьи для нескольких журналов. Он также сотрудничал с ведущими и отраслевыми изданиями по широкому кругу редакционных проектов. В 2012 году он помог основать OnAllCylinders, где ему нравится освещать все аспекты хот-роддинга и гонок.

Как работает система кондиционирования воздуха?

Если вы живете в жарком климате, нет ничего лучше, чем сохранять прохладу с помощью системы кондиционирования воздуха.Но как именно они работают?

Здесь мы пытаемся ответить на этот самый вопрос и исследовать, какие типы систем переменного тока существуют. Поскольку отопление, вентиляция и кондиционирование воздуха (HVAC) — это очень сложная инженерная область, мы должны отметить, что это не является исчерпывающим руководством и должно рассматриваться как краткий обзор.

СВЯЗАННЫЙ: КАК ЛЮДИ СОХРАНЯЮТ ОХЛАЖДЕНИЕ ПЕРЕД КОНДИЦИОНЕРАМИ ВОЗДУХА

Как работает кондиционер?

Короче говоря, они работают как обычный кухонный холодильник.В системах кондиционирования и холодильниках используется одна и та же технология — цикл охлаждения.

В системах, использующих преимущества этого цикла, используются специальные химические вещества, называемые хладагентами (в некоторых системах вода), для поглощения и / или выделения энергии для нагрева или охлаждения воздуха. Когда эти химические вещества сжимаются компрессором агрегата AC, хладагент меняет состояние с газа на жидкость и выделяет тепло в конденсаторе .

При охлаждении помещения этот процесс происходит за пределами рассматриваемого пространства.Этот холодный воздух под высоким давлением подается во внутренний блок и возвращается обратно в газ с помощью расширительного клапана системы .

Это, как следует из названия, вызывает расширение жидкого хладагента обратно в газовую форму. По мере того, как хладагент расширяется, он «втягивает» тепло и вызывает охлаждение воздуха в рассматриваемом пространстве на испарителе системы кондиционирования.

Этот теперь расширенный и «горячий» газ далее транспортируется в компрессор системы, и цикл начинается снова.

Чтобы визуализировать это, представьте губку как хладагент, а воду как «тепло». Когда вы сжимаете промокшую губку (компрессор и конденсатор), вода выталкивается наружу и выделяется тепло в нашей аналогии. Когда вы отпускаете губку (расширительный клапан и испаритель), она расширяется и, по нашей аналогии, может поглотить больше воды или тепла.

В основе этого цикла лежат научные принципы термодинамики, закон Бойля, закон Шарля и законы Ги-Люссака.

В первую очередь факт, что «жидкость, расширяясь в газ, извлекает или забирает тепло из окружающей среды.»- Goodman Air Conditioning and Heating.

В этом смысле кондиционер и холодильники работают,« перемещая »или« перекачивая »энергию из одного места в другое. В большинстве случаев кондиционеры передают« тепло »из вашей комнаты, офис или дом, и выбросить его в воздух за пределами вашего дома или офиса.

Источник: Pixabay

Этот цикл является обратимым и может использоваться для обогрева вашей комнаты или всего вашего дома в холодные месяцы, но эта функция обычно зарезервировано для систем под названием тепловые насосы .

Основное различие между холодильником и блоком переменного тока состоит в том, что блок имеет тенденцию разделяться на две отдельные части; внешний конденсатор (или чиллер) и внутренний блок.

Холодильники, с другой стороны, являются одним автономным блоком (хотя некоторые блоки переменного тока также могут быть).

Любое тепло, удаляемое из его внутренней части, сбрасывается в ту же комнату в задней части устройства. Это основная причина, по которой вы никогда не сможете использовать холодильник в качестве самостоятельного блока переменного тока; если, конечно, вы не проделаете дыру в стене позади него.

Вы можете проверить это, прикоснувшись (будьте осторожны, он может очень сильно нагреться) задней части холодильника во время его работы. Он должен быть теплым или горячим на ощупь.

Какие существуют типы систем кондиционирования воздуха?

Блоки переменного тока сегодня бывают разных форм и размеров, от массивных систем воздуховодов в офисах и промышленных зданиях до небольших домашних систем переменного тока, с которыми вы, вероятно, более знакомы.

Некоторые из более крупных установок имеют очень большие внешние холодильные агрегаты, которые могут иметь водяное или воздушное охлаждение, а в старых системах — градирни.Они соединены изолированными трубами для перекачивания хладагента для кондиционирования воздуха внутри большого или набора больших агрегатов, называемых установками кондиционирования воздуха (AHU).

Эти системы могут быть очень сложными с нагревательными элементами, увлажнителями и фильтрами для очень точного контроля температуры и качества воздуха в помещениях в здании, которые они обслуживают. Они также, как правило, поставляются со сложными системами рекуперации тепла для уменьшения количества электричества (или газа), необходимого для нагрева / охлаждения воздуха в системе.

Они бывают двух основных форм; Постоянный объем воздуха (CAV) и переменный объем воздуха (VAV) , который определяет степень, в которой регулируется воздушный поток вокруг воздуховодов системы.

Им также можно управлять с помощью очень сложных систем программного обеспечения, датчиков и исполнительных механизмов, называемых системами управления зданием (BMS).

Эти большие системы отопления, вентиляции и кондиционирования воздуха «всасывают» свежий наружный воздух и при необходимости нагревают / охлаждают его перед транспортировкой по воздуховодам в требуемые зоны.Эти системы также могут иметь терминалы повторного нагрева или фанкойлы для дальнейшего улучшения темперирования подаваемого воздуха в зону.

Более современные установки отказываются от централизованных AHU в пользу систем фанкойлов или «внутренних блоков», которые напрямую связаны с одним или несколькими «наружными» блоками переменного тока. Они называются системами с регулируемым потоком охлаждения (VRF), которые регулируют воздух непосредственно в месте использования.

Но большинство людей привыкли к тепловым насосам с раздельным или многократным распределением воздуха (ASHP) или к агрегатам кондиционирования воздуха для охлаждения отдельных помещений.Они гораздо больше похожи на холодильники и чаще всего устанавливаются в жилых помещениях.

Но следует также отметить, что существуют различные другие системы, использующие тот же принцип, например, геотермальные тепловые насосы (GSHP). Они используют землю в качестве «свалки» или источника тепла вместо воздуха или источника тепла. И ASHP, и GSHP могут также подключаться к обычным радиаторным системам или системам теплого пола вместо обычного газового котла с некоторыми изменениями.

Как работает кондиционер в автомобилях?

Проще говоря, кондиционер в автомобиле работает точно так же, как и любой другой блок переменного тока.Единственная разница в том, что они должны быть достаточно компактными, чтобы поместиться в автомобиле.

Чиллерная часть системы (с расширительным клапаном и испарителем) обычно устанавливается за приборной панелью автомобиля. Другой рабочий конец системы (компрессор и конденсатор), как правило, располагается рядом с решеткой радиатора автомобиля — туда, куда вы едете, вдувается свежий воздух.

Обе части соединены цепью труб, по которым хладагент проходит между агрегатами во время работы.В отличие от более крупных агрегатов, используемых в зданиях, сам агрегат в автомобилях, как правило, приводится в действие коленчатым валом автомобиля, другими словами, он приводится в действие двигателем.

Эти системы обычно также поставляются с обогревателем и осушителями для кондиционирования воздуха по мере необходимости. Как и в случае создания систем переменного тока, автомобильный блок переменного тока преобразует хладагент между газом и жидкостью, высоким и низким давлением, а также высокой и низкой температурой по мере необходимости.

Дешевле оставить кондиционер на весь день?

Проще говоря, нет.Причина этого в том, что, оставив систему переменного тока на весь день, вы:

1. Без необходимости расходуете энергию, если вас нет дома или комнаты / зоны не используются.

2. Работа системы приводит к ее износу. Это сокращает срок его службы.

Вам также следует убедиться, что окна закрыты или установлена ​​защита от сквозняков, когда кондиционер работает. В конце концов, вы же не хотите «кондиционировать» мир.

Вам также следует убедиться, что вы используете затеняющие устройства (например, навес или стратегически посаженные деревья) снаружи, чтобы уменьшить «солнечное излучение» или пассивное отопление вашего дома от солнечного света.

Другие меры включают улучшение теплоизоляции вашего дома, поддержание в хорошем состоянии систем кондиционирования (особенно фильтров) и использование потолочных вентиляторов для улучшения внутреннего перемешивания воздуха (т. Е. Предотвращения расслоения горячего воздуха около потолка и наоборот. ).

Если вас действительно беспокоят счета за электроэнергию, связанные с вашими системами переменного тока, вы можете сделать свою систему переменного тока «умнее». Используя бытовую BMS, интеллектуальные датчики (термостаты и погодную компенсацию), зональный контроль и другие энергоэффективные меры, вы можете значительно повысить эффективность и снизить стоимость ваших систем переменного тока.

Вам также следует использовать решения «бесплатного» охлаждения и обогрева, подумав об использовании природы, чтобы помочь вам. Правильное использование естественной вентиляции для охлаждения или обогрева вашего дома резко сократит затраты на использование энергии, связанной с отоплением / охлаждением, путем ее отключения.

Но это возможно только в том случае, если качество воздуха за пределами вашего дома позволяет это. Например, проживание в большом городе с «грязным воздухом» может ограничить вашу способность использовать эту бесплатную форму отопления и охлаждения.

Как работает кондиционер с обратным циклом?

Системы кондиционирования воздуха с обратным циклом или тепловые насосы, как они более широко известны, работают так же, как и любые другие блоки переменного тока. Исключением является то, что они специально разработаны, чтобы иметь возможность по желанию полностью изменить цикл.

Как и другие системы переменного тока, они также могут фильтровать и осушать воздух по мере необходимости.

Кондиционер — Простая английская Википедия, бесплатная энциклопедия

Внешняя часть стандартного однокомнатного кондиционера.Для облегчения установки блоки обычно встраиваются в окна или, как на этой фотографии, отверстие в стене. Внутренняя часть того же блока. Передняя панель опускается, открывая элементы управления.
Примечание: термин «кондиционирование воздуха» относится к любой форме «Отопление, вентиляция и кондиционирование» . В этой статье конкретно рассматриваются агрегаты, используемые как часть системы охлаждения.

Кондиционер — это система или машина, которая обрабатывает воздух в определенной, обычно замкнутой области с помощью цикла охлаждения, в котором теплый воздух удаляется и заменяется более холодным.

В строительстве вся система отопления, вентиляции и кондиционирования называется HVAC. Будь то дома, офисы или автомобили, его цель — обеспечить комфорт за счет изменения свойств воздуха, обычно за счет охлаждения воздуха внутри. Основная функция кондиционера — изменение неблагоприятной температуры.

В 19 веке британский ученый и изобретатель Майкл Фарадей обнаружил, что сжатие и сжижение аммиака может охладить воздух, если сжиженный аммиак испарится.

В 1842 году американский врач доктор Джон Горри использовал компрессорную технологию для создания льда, который он использовал для охлаждения воздуха для своих пациентов. [1] Он надеялся в конечном итоге использовать свою машину для производства льда для регулирования температуры зданий и даже рассматривал возможность охлаждения целых городов с помощью системы централизованных кондиционеров.

Инженеры по кондиционированию воздуха широко делят системы кондиционирования воздуха на comfort и на процесс .

Комфортные приложения стремятся обеспечить внутреннюю среду, которая остается относительно постоянной в диапазоне, предпочтительном для человека, несмотря на изменения внешних погодных условий или внутренних тепловых нагрузок.

Технологические приложения стремятся обеспечить подходящую среду для промышленного или коммерческого процесса, независимо от внутренних тепловых нагрузок и внешних погодных условий. Хотя зачастую условия находятся в одном и том же диапазоне комфорта, условия определяют требования процесса, а не предпочтения человека. Технологические приложения включают:

  • Больничные операционные, в которых воздух фильтруется до высокого уровня, чтобы снизить риск заражения, а влажность контролируется, чтобы ограничить обезвоживание пациента.Хотя температуры часто находятся в комфортном диапазоне, некоторые специализированные процедуры, такие как операция на открытом сердце, требуют низких температур (около 18 ° C, 64 ° F), а другие, такие как относительно высокие температуры новорожденных (около 28 ° C, 82 ° F).
  • Помещения для разведения лабораторных животных. Поскольку многие животные обычно размножаются только весной, содержание их в комнатах, которые отражают весенние условия, может заставить их воспроизводиться круглый год.
  • Кондиционер для самолетов.Хотя номинально нацелено на обеспечение комфорта пассажиров и охлаждение оборудования, кондиционирование воздуха в самолетах представляет собой особый процесс из-за низкого давления воздуха вне самолета.

Другие примеры включают:

  • Центры обработки данных
  • Текстильные фабрики
  • Оборудование для физических испытаний
  • Растения и сельскохозяйственные угодья
  • Ядерные установки
  • Шахты
  • Промышленная среда
  • Зоны приготовления и обработки пищевых продуктов

Как в комфортных, так и в технологических приложениях, цель состоит не только в контроле температуры (хотя в некоторых комфортных приложениях это все, что контролируется), но также в таких факторах, как влажность, движение воздуха и качество воздуха.

Основы и теории систем кондиционирования воздуха [изменить | изменить источник]

Холодильный цикл [изменить | изменить источник]

Простая стилизованная схема холодильного цикла: 1) змеевик конденсации, 2) расширительный клапан, 3) змеевик испарителя, 4) компрессор.

В холодильном цикле насос передает тепло от источника с более низкой температурой в радиатор с более высокой температурой. Тепло естественным образом течет в обратном направлении. Это наиболее распространенный вид кондиционирования воздуха.Система кондиционирования воздуха с охлаждением работает примерно так же, отводя тепло из помещения, в котором она стоит.

В этом цикле используется универсальный газовый закон PV = nRT , где P — давление, V, — объем, R — универсальная газовая постоянная, T — температура и n — количество молекул газа (1 моль = 6,022 × 10 23 молекул).

Наиболее распространенный цикл охлаждения использует электродвигатель для привода компрессора.В автомобиле компрессор приводится в движение шкивом на коленчатом валу двигателя, причем оба используют электродвигатели для циркуляции воздуха. Поскольку испарение происходит при поглощении тепла, а при выделении тепла происходит конденсация, кондиционеры предназначены для использования компрессора, вызывающего перепады давления между двумя отсеками, и активной прокачки охлаждающей жидкости по замкнутой системе. Охлаждающая жидкость или хладагент закачивается в охлаждаемую камеру (змеевик испарителя). При низком давлении хладагент испаряется, забирая с собой тепло.В другом отделении (конденсаторе) пар хладагента сжимается и пропускается через другой теплообменный змеевик, конденсируется в жидкость, которая затем отводит тепло, ранее поглощенное из охлаждаемого пространства.

Кондиционер оказывает такое же влияние на здоровье человека, как и любая обычная система отопления. Плохо обслуживаемые системы кондиционирования (особенно большие, централизованные системы) могут иногда способствовать росту и распространению таких микроорганизмов, как Legionella pneumophila, возбудитель инфекции, вызывающий Болезнь легионеров. [2] Кондиционер может оказать положительное влияние на людей, страдающих аллергией и астмой. [3]

Во время сильной жары кондиционирование воздуха может спасти жизни пожилых людей. Некоторые местные власти даже создали общественные центры охлаждения для тех, у кого дома нет кондиционера.

Одним из главных условий качественного монтажа климатического оборудования является правильный выбор места крепления внутреннего и внешнего блоков. Каждый из перечисленных модулей отличается определенными конструктивными особенностями, правилами будущей установки.Чтобы установить кондиционер, нужно учесть все требования, благодаря которым оборудование может в дальнейшем эксплуатироваться в разных режимах.

Устанавливать кондиционер нужно, учитывая следующие нюансы:

  • Тяжелый наружный блок не крепится к стенам из пенобетона;
  • Крепеж на вентилируемой части фасада с демпфирующим уплотнением. Выбор именно этого материала обусловлен тем, что он снижает шумовую вибрацию при работе внешнего блока;
  • Крепление опорных кронштейнов осуществляется непосредственно к стене, а не к декоративной облицовке или утеплителю.

Установка кондиционера зависит от определенных критериев, она начинается с поиска идеального места для установки наружного блока. Для этого есть несколько рекомендаций:

  • Внешний блок обязательно находится в зоне свободной циркуляции воздушных потоков.
  • Важно организовать свободный доступ для дальнейшего обслуживания и ремонта агрегата.
  • Во время работы из оборудования идут отработанные потоки горячего воздуха, поэтому его необходимо располагать так, чтобы дым не попадал в окна нижних этажей. [4]

Энергоэффективность [изменить | изменить источник]

В 30 штатах компьютерная система, признанная неисправной, подсчитывает количество голосов

Обновление (1100ET) : Далее в кроличьей норе «Системы голосования Domminion», Politico сообщает, что — технологический сбой, который остановил голосование надвое. Округи Джорджии во вторник утром были вызваны тем, что поставщик накануне вечером загрузил обновление для своих избирательных машин , сообщил инспектор по выборам округа.

Избиратели не могли подавать машинные бюллетени в течение нескольких часов в округах Морган и Сполдинг после того, как электронные устройства вышли из строя, заявили официальные лица штата. В связи с задержками судья Верховного суда В. Флетчер Сэмс продлил голосование до 23:00.

Округа используют машины для голосования, произведенные Dominion Voting Systems, и электронные книги для голосования, используемые для регистрации избирателей, произведенные KnowInk.

Ни Dominion, ни KnowInk не ответили на запрос о комментарии. Представитель канцелярии госсекретаря также не ответил на последующие вопросы о том, кто загрузил набор данных и был ли он кем-либо предварительно просмотрен и протестирован.

* * *

Обновление (1045ET) : Наверное, ничего …

2014 Совместный проект с Фондом Клинтона на 2,25 млн долларов https://t.co/zhOt93z1ey

— Томми Скотт (@ tommy997) 7 ноября 2020 г.

* * *

Как подробно описала американский мыслитель Андреа Видбург ранее, , когда Кайл Беккер услышал о «глючной» компьютерной программе в округе Антрим, штат Мичиган, той, которая пыталась отдать 6 000 голосов Трампа Байдену, он начал исследовать систему.В конце концов он обнаружил огромное количество очень тревожной информации. В течение некоторого времени было известно, что система Доминиона неисправна, однако ее используют 28 штатов. Этот пост представляет собой сборник информации Беккера, как из его собственных твитов, так и из твитов одного человека, о том, что происходит с этой системой:

МАССИВНЫЙ.

«Подсчитывались бюллетени для демократов, которые предназначались для республиканцев … Программное обеспечение для составления таблиц« дало сбой »… Теперь мы обнаружили, что 47 округов использовали это же программное обеспечение.«

Председатель Республиканской партии штата Мичиган показывает, что коррумпированное программное обеспечение перевернуло тысячи голосов от Трампа к Байдену. Смотрите! 👇 pic.twitter.com/ORXa77vkHU

— Кайл Беккер (@kylenabecker) 6 ноября 2020 г.

Следующий твит подвергается цензуре, потому что, хотя Беккер заявляет только факты, Twitter хочет, чтобы вы знали, что факты не имеют значения. Обязательно щелкните, чтобы прочитать его твит. Твиттер — зло, но фактически он владеет площадью:

Система избирательного программного обеспечения в Мичигане, которая переключила 6000 голосов от Трампа к Байдену, называется «Доминион».«

Он используется в 30 штатах, включая:

☑️Невада
☑️Аризона
☑️Миннесота
Мичиган
☑️Висконсин
Джорджия
☑️Пенсильвания

Каждый крупный штат колеблется. КАЖДЫЙ. ОДИН. .com / R6s2RnVmEF

— Кайл Беккер (@kylenabecker) 7 ноября 2020 г.

Просто сделайте паузу и примите во внимание, что широко распространенная система избирательного программного обеспечения, которая использовалась практически во всех колеблющихся штатах на выборах 2020 года, называется «Доминион».«

« ДОМИНИОН ».

Если это не вызывает * озноб * по позвоночнику, ничего не будет. Pic.twitter.com/oFmJTr9zMo

— Кайл Беккер (@kylenabecker) 7 ноября 2020 г.

Узнайте, кто может быть подключен к этой программе. Ее фамилия рифмуется со словом Duh-low-see.

— The 🐰FOO (@PolitiBunny) 7 ноября 2020 г.

Как используется компания по разработке программного обеспечения для выборов, буквально названная «Доминион»:

☑️Почти 30 штатов
4 из 10 лучших округов
9 из 20 лучших округов

Доминион используется в штате Мичиган, где голоса были переведены с Трамп Байдену.Свободная страна не дает ни одной компании такой власти. pic.twitter.com/42r4AuBVtO

— Кайл Беккер (@kylenabecker) 7 ноября 2020 г.

NBC подняла тревогу в системе голосования Доминиона в начале 2000 года. Это система голосования, используемая в 30 штатах, во всех штатах с колеблющимся большинством и во многих крупнейших округах. Доминион использовался в Мичигане, где голоса Трампа перешли к Байдену. Невероятно. Https://t.co/YZaZS0b4U5 pic.twitter.com/gyEhZEf218

— Кайл Беккер (@kylenabecker) 7 ноября 2020 г.

ДОМИНИОН.ГОЛОСОВАНИЕ. СИСТЕМЫ. Https://t.co/hxnxqZF2Fr

— Кайл Беккер (@kylenabecker) 7 ноября 2020 г.

В Техасе компании Dominion Voting Systems ТРИ раза отказали в сертификации на выборах штата. В нем перечислены многочисленные причины серьезных проблем с безопасностью системы.

Доминион теперь связан с нарушениями в голосовании как в штате Мичиган, так и в штате Джорджия.

ТЕХАС ЗНАЕТ 🚨🗳️👇 https://t.co/WiT3i704th pic.twitter.com/fGdw5IwGoS

— Кайл Беккер (@kylenabecker) 7 ноября 2020 г.

«Обеспечение безопасности наших выборов не должно быть вопросом пристрастия.«

В начале 2020 года Демс провел слушания с участием трех крупных частных поставщиков избирательных систем, включая DOMINION VOTING SYSTEMS.

Председатель дем. Отдела раскрыл компоненты голосования из Китая, широко распространенную уязвимость Интернета и хакерских атак И ХУЖЕ. Pic.twitter.com / m69dHoxM33

— Кайл Беккер (@kylenabecker) 7 ноября 2020 г.

Я обычно рекомендую ленту Twitter Беккера. У него есть несколько интересных наблюдений о странных аномалиях на выборах. Вот всего два примера:

Нарушения в голосовании в штатах с колебаниями:

☑️Байден превосходит сенаторов в штатах с колебаниями, уступает в Вирджинии, Нью-Хэмпшир, Род-Айленд
☑️Байден отстает от Хиллари / Обамы в городах, за исключением Мичиган, Пенсильвания, Джорджия, Висконсин. 100% маржа
☑️GOP проигрывает ZERO House race

Что-то определенно не так.

— Кайл Беккер (@kylenabecker) 6 ноября 2020 г.

Ошибки на выборах 2020 года имеют одно направление. Это полная противоположность «случайности».

Если бы это были просто аномалии в различных гонках по всей стране, которые шли по пути Трампа и Байдена, вопросов было бы НАМНОГО меньше.

— Кайл Беккер (@kylenabecker) 7 ноября 2020 г.

Что меня больше всего беспокоит, так это безнаказанность, с которой демократы играют в систему. Они даже не пытаются замести следы. Они на 100% уверены, что их действия не будут иметь последствий. Они знают, что СМИ, которые должны следить за американскими гражданами, на самом деле являются рычагом Демократической партии, которая сделает все необходимое, чтобы прикрыть преступления демократов на выборах.

Причины, домашние средства и профилактика

Мышечные боли могут возникать у взрослых и детей. Во многих случаях боль в мышцах не о чем беспокоиться и проходит без лечения.Однако иногда мышечные боли могут быть симптомом какого-либо заболевания.

Общие причины мышечных болей включают:

  • перенапряжение
  • травма области тела
  • вирусные инфекции

Мышечные боли, также известные как миалгия, могут ощущаться в любой области тела, где есть мышцы. В зависимости от причины дискомфорт может быть легким или очень сильным.

К наиболее частым причинам мышечных болей относятся:

Стресс

Стресс мешает организму бороться с болезнью.У людей, которые плохо себя чувствуют и находятся в состоянии стресса, мышцы могут болеть, когда организм пытается бороться с воспалением или инфекцией.

Симптомы стресса включают:

  • учащенное сердцебиение или учащенное сердцебиение
  • высокое кровяное давление
  • головные боли
  • дрожь
  • боли в груди
  • чувство одышки или гипервентиляции

Люди могут пытаться бороться со стрессом, обучаясь релаксации техники и, по возможности, устранение стрессовых ситуаций.

Дефицит питания

Человек может испытывать мышечные боли и боли из-за того, что он не получает правильного питания из своего рациона.

Витамин D играет особенно важную роль в обеспечении правильного функционирования мышц. Витамин D помогает усвоению кальция, а его дефицит может привести к гипокальциемии.

Гипокальциемия — это состояние, при котором уровень кальция в крови низкий, что может поражать не только мышцы, но и кости и органы.

Обезвоживание

Человек, страдающий обезвоживанием, может испытывать мышечные боли.

Питье достаточного количества воды жизненно важно для нормального функционирования организма, поскольку без достаточного количества жидкости он может быстро начать отключаться. Обезвоживание затрудняет выполнение основных функций организма, таких как дыхание и пищеварение.

Люди должны знать, сколько воды они пьют. Рекомендуемое количество — 6–8 стаканов воды каждый день. Если из-за жаркой погоды или физических упражнений человек потеет больше, чем обычно, ему нужно будет больше пить.

Растяжения и растяжения

Растяжения, растяжения и другие травмы могут вызывать мышечные боли и дискомфорт.

Люди могут обнаружить, что определенная часть тела становится жесткой и болезненной при травме. Растягивание мышц также может вызвать болезненность мышц.

Некоторые растяжения и растяжения не нуждаются в лечении, но человеку следует отдыхать, принимать безрецептурные обезболивающие или использовать тепловые компрессы, чтобы облегчить симптомы.

Однако, если травма вызывает сильную боль, ограничивает нормальное движение или не улучшается со временем, рекомендуется записаться на прием к врачу.

Недостаток сна

Недостаток сна может иметь серьезные последствия для организма.

Сон позволяет телу отдыхать и восстанавливать силы, и у человека могут болеть мышцы, если он не высыпается.

Недостаток качественного сна также может заставить людей чувствовать себя вялыми и медленными. Это может повлиять на способность людей ясно мыслить и затруднить выполнение повседневных задач.

Слишком большая физическая активность

Чрезмерное количество упражнений может привести к жесткости и боли в мышцах.

Следующие факторы могут сделать человека более восприимчивым к мышечным болям и болям при выполнении упражнений:

  • неиспользование упражнений
  • попытка нового упражнения
  • упражнения более интенсивные или более длительные, чем обычно
  • отсутствие разминки или растяжки правильно

Инфекции, болезни и наследственные состояния

Мышечные боли могут быть вызваны множеством различных заболеваний. Состояния, которые наиболее часто влияют на мышцы, включают:

Некоторые люди, у которых есть мышечные боли, могут отмечать следующие симптомы наряду с болезненностью и дискомфортом в мышцах:

  • жесткость и слабость в пораженной области
  • лихорадка
  • сыпь
  • след укуса
  • головокружение
  • затрудненное дыхание
  • признаки инфекции, такие как покраснение и припухлость

Некоторые из этих симптомов, такие как очень высокая температура или затрудненное дыхание, требуют немедленной медицинской помощи.

Если причиной боли является растяжение, травма, напряжение или стресс, люди обычно будут чувствовать дискомфорт в определенной области.

Когда боли возникают во всем теле, это, скорее всего, вызвано инфекцией, лекарствами или основным заболеванием.

Домашних средств часто бывает достаточно, чтобы облегчить боль, вызванную незначительными травмами, чрезмерными упражнениями или стрессом.

Многие люди могут лечить свои симптомы с помощью метода R.I.C.E, который включает:

  • Отдых : Отдохните пораженный участок и прекратите деятельность, вызвавшую травму.
  • Лед : Используйте пакет со льдом или пакет с замороженным горошком, чтобы облегчить боль и уменьшить отек. Прикладывайте лед к пораженному участку на 15–20 минут трижды в день.
  • Компрессионная : Используйте компрессионную повязку, чтобы уменьшить отек.
  • Уровень : По возможности приподнимите ступни, чтобы минимизировать воспаление.

Другие полезные домашние средства включают:

  • использование безрецептурных обезболивающих
  • осторожное растяжение пораженных мышц
  • участие в мероприятиях, способствующих расслаблению и уменьшению стресса, таких как йога и медитация

Мышечные боли и боли, которые являются тяжелыми или не проходят, могут быть симптомом основного состояния, требующего медицинского обследования и лечения.

Человек должен обратиться к врачу, если он:

  • замечает какие-либо признаки инфекции, такие как покраснение и отек
  • укус клеща
  • появляется сыпь
  • считает, что лекарство вызывает боль в мышцах

Это необходимо немедленно обратиться за медицинской помощью, если мышечная боль возникает рядом с:

  • затрудненное дыхание
  • затруднение глотания
  • чувство головокружения
  • ригидность шеи и высокая температура
  • мышечная слабость
  • невозможность пошевелить пораженным участком
  • рвота
  • уменьшение объема мочи или внезапная задержка воды

Люди могут предотвратить появление болей в мышцах из-за напряжения, стресса и интенсивной физической активности, выполнив следующие действия:

  • растяжка перед тренировкой
  • регулярные упражнения поддерживать мышцы в тонусе
  • разминка перед тренировкой и охлаждение после
  • делать регулярные перерывы в сидячем положении в течение длительного времени

Большинство причин мышечной боли доброкачественные, но постоянная боль может потребовать медицинской помощи.

15 преимуществ питьевой воды и другие факты о воде

Сохранение гидратации имеет решающее значение для здоровья и благополучия, но многие люди не потребляют достаточно жидкости каждый день.

Около 60 процентов тела состоит из воды, и около 71 процента поверхности планеты покрыто водой.

Возможно, именно вездесущая природа воды означает, что питье в достаточном количестве каждый день не стоит на первом месте в списках приоритетов многих людей.

Краткие сведения о питьевой воде

  • Взрослые люди на 60 процентов состоят из воды, а наша кровь на 90 процентов состоит из воды.
  • Не существует общепринятого количества воды, которое необходимо употреблять ежедневно.
  • Вода необходима для почек и других функций организма.
  • При обезвоживании кожа становится более уязвимой для кожных заболеваний и образования морщин.
  • Питьевая вода вместо газированной воды может помочь с похуданием.
Поделиться на PinterestВозможные преимущества питьевой воды варьируются от сохранения здоровья почек до похудания.

Для правильного функционирования все клетки и органы тела нуждаются в воде.

Вот несколько причин, по которым нашему организму нужна вода:

1. Она смазывает суставы

Хрящи в суставах и дисках позвоночника содержат около 80 процентов воды. Длительное обезвоживание может снизить амортизационную способность суставов, что приведет к боли в суставах.

2. Образует слюну и слизь.

Слюна помогает нам переваривать пищу и сохраняет влажность рта, носа и глаз. Это предотвращает трение и повреждение. Питьевая вода также сохраняет ротовую полость в чистоте.Употребление вместо сладких напитков также может уменьшить разрушение зубов.

3. Он доставляет кислород по всему телу.

Кровь более чем на 90 процентов состоит из воды, и кровь переносит кислород к различным частям тела.

4. Улучшает здоровье и красоту кожи.

При обезвоживании кожа становится более уязвимой для кожных заболеваний и преждевременного образования морщин.

5. Он смягчает мозг, спинной мозг и другие чувствительные ткани.

Обезвоживание может повлиять на структуру и функции мозга.Он также участвует в производстве гормонов и нейротрансмиттеров. Продолжительное обезвоживание может привести к проблемам с мышлением и рассуждением.

6. Регулирует температуру тела.

Вода, которая накапливается в средних слоях кожи, выходит на поверхность кожи в виде пота при нагревании тела. По мере испарения охлаждает тело. В спорте.

Некоторые ученые предположили, что, когда в организме слишком мало воды, запас тепла увеличивается, и человек менее способен переносить тепловую нагрузку.

Наличие большого количества воды в организме может снизить физическое напряжение, если тепловой стресс возникает во время упражнений. Однако необходимы дополнительные исследования этих эффектов.

7, От этого зависит пищеварительная система

Кишечник нуждается в воде для нормальной работы. Обезвоживание может привести к проблемам с пищеварением, запорам и повышенной кислотности желудка. Это увеличивает риск изжоги и язвы желудка.

8. Смывает отходы организма

Вода необходима в процессах потоотделения и выведения мочи и кала.

9. Помогает поддерживать кровяное давление

Недостаток воды может привести к сгущению крови и повышению кровяного давления.

10. Это необходимо дыхательным путям

При обезвоживании дыхательные пути ограничиваются телом, чтобы минимизировать потерю воды. Это может усугубить астму и аллергию.

11. Обеспечивает доступность минералов и питательных веществ.

Они растворяются в воде, что позволяет им достигать различных частей тела.

12. Предотвращает повреждение почек.

Почки регулируют жидкость в организме. Недостаток воды может привести к образованию камней в почках и другим проблемам.

13. Повышает работоспособность во время физических упражнений.

Некоторые ученые предположили, что потребление большего количества воды может улучшить работоспособность во время напряженной деятельности.

Чтобы подтвердить это, необходимы дополнительные исследования, но в одном обзоре было обнаружено, что обезвоживание снижает производительность при занятиях продолжительностью более 30 минут.

14. Похудание

Вода также может помочь в похудании, если ее употреблять вместо подслащенных соков и газированных напитков. «Предварительная загрузка» воды перед едой может помочь предотвратить переедание, создавая ощущение сытости.

15. Снижает вероятность похмелья.

Во время вечеринок несладкая газированная вода со льдом и лимоном, чередующаяся с алкогольными напитками, может помочь предотвратить чрезмерное употребление алкоголя.

Вода помогает растворять минералы и питательные вещества, делая их более доступными для организма.Это также помогает удалять отходы.

Эти две функции делают воду жизненно важной для почек.

Каждый день почки фильтруют около 120–150 литров жидкости.

Из них примерно 1-2 литра выводятся из организма в виде мочи, а остальная часть восстанавливается с кровотоком.

Вода необходима для работы почек.

Если почки не функционируют должным образом, продукты жизнедеятельности и избыток жидкости могут накапливаться внутри тела.

Нелеченная хроническая болезнь почек может привести к почечной недостаточности.Органы перестают работать, требуется диализ или трансплантация почки.

Инфекции мочевыводящих путей (ИМП) — второй по распространенности тип инфекции в организме. На их долю ежегодно приходится около 8,1 миллиона обращений к поставщикам медицинских услуг в США.

Если инфекция распространяется на верхние мочевыводящие пути, включая почки, это может привести к необратимому повреждению. Внезапные или острые инфекции почек могут быть опасными для жизни, особенно при сепсисе.

Питье большого количества воды — простой способ снизить риск развития ИМП и помочь в лечении уже существующей ИМП.

Камни в почках влияют на работу почек. Если присутствует, может осложнить ИМП. Эти сложные ИМП, как правило, требуют более длительного лечения антибиотиками, обычно продолжительностью от 7 до 14 дней.

Основная причина образования камней в почках — недостаток воды. Люди, сообщающие о них, часто не пьют рекомендуемое дневное количество воды. Камни в почках также могут увеличить риск хронического заболевания почек.

В ноябре 2014 года Американский колледж врачей выпустил новые рекомендации для людей, у которых ранее были камни в почках.В рекомендациях говорится, что увеличение потребления жидкости для обеспечения 2 литров мочеиспускания в день может снизить риск рецидива камней как минимум наполовину без каких-либо побочных эффектов.

Обезвоживание происходит, если мы потребляем и теряем больше воды, чем потребляет организм. Это может привести к дисбалансу электролитов в организме. Электролиты, такие как калий, фосфат и натрий, помогают передавать электрические сигналы между клетками. Почки поддерживают стабильный уровень электролитов в организме при правильном функционировании.

Когда почки не могут поддерживать баланс уровней электролитов, эти электрические сигналы смешиваются. Это может привести к судорогам с непроизвольными движениями мышц и потерей сознания.

В тяжелых случаях обезвоживание может привести к почечной недостаточности, что может быть опасным для жизни. Возможные осложнения хронической почечной недостаточности включают анемию, повреждение центральной нервной системы, сердечную недостаточность и ослабленную иммунную систему.

Некоторая часть воды, необходимая организму, поступает из продуктов с высоким содержанием воды, таких как супы, помидоры, апельсины, но большая часть поступает с питьевой водой и другими напитками.

Во время повседневной жизни организм теряет воду, и ее необходимо восполнить. Мы замечаем, что теряем воду из-за таких действий, как потоотделение и мочеиспускание, но вода теряется даже при дыхании.

Питьевая вода, будь то из-под крана или из бутылки, является лучшим источником жидкости для организма.

Молоко и соки также являются хорошими источниками жидкости, но напитки, содержащие алкоголь и кофеин, такие как безалкогольные напитки, кофе и пиво, не идеальны, потому что они часто содержат пустые калории.Питьевая вода вместо газированной воды может помочь с похуданием.

Ранее считалось, что напитки с кофеином обладают мочегонными свойствами, что означает, что они заставляют организм выделять воду. Однако исследования показывают, что потеря жидкости из-за напитков с кофеином минимальна.

Количество воды, необходимое каждый день, варьируется от человека к человеку в зависимости от того, насколько они активны, сколько потеют и т. Д.

Не существует фиксированного количества воды, которое необходимо употреблять ежедневно, но существует общее мнение о том, что такое здоровое потребление жидкости.

По данным Национальной академии наук, инженерии и медицины США, среднее рекомендуемое ежедневное потребление воды как с едой, так и с напитками составляет:

Это будет около 15,5 чашек для мужчин и чуть более 11 чашек для женщин. Однако около 80 процентов этого количества должно поступать из напитков, включая воду, а остальное — из пищи.

Это означает, что:

  • Мужчины должны выпивать около 100 унций или 12,5 стакана жидкости
  • Женщины должны выпивать около 73 унций или чуть более 9 чашек

Свежие фрукты и овощи и все безалкогольные жидкости учитываются эта рекомендация.

Время, когда наиболее важно пить много воды:

  • , когда у вас жар;
  • , когда жаркая погода;
  • , если у вас диарея и рвота;
  • , когда вы сильно потеете, например, из-за к физической активности

Вот некоторые факты о воде:

  • У младенцев и детей процент воды выше, чем у взрослых. Когда рождаются младенцы, они примерно на 78 процентов состоят из воды, но к 1 году этот показатель падает до 65 процентов.
  • В жировой ткани меньше воды, чем в мышечной.
  • У мужчин больше воды, чем у женщин, в процентном отношении.

Достаточно ли мы пьем воды?

В исследовании, проведенном Центрами по контролю и профилактике заболеваний (CDC) в 2013 году, были проанализированы данные опроса Национального института рака 2007 года о пищевых отношениях и поведении.

Из выборки 3397 взрослых исследователи обнаружили:

  • 7 процентов взрослых заявили, что не потребляют питьевую воду ежедневно
  • 36 процентов взрослых сообщили, что пьют 1-3 чашки питьевой воды в день
  • 35 процентов взрослые сообщили, что пьют 4-7 чашек питьевой воды в день
  • 22 процента взрослых сообщили, что пьют 8 или более чашек в день

Люди с большей вероятностью выпивали менее 4 чашек питьевой воды в день, если они потребляли 1 чашку или меньше фруктов или овощей в день.

В исследовании измерялось только потребление питьевой воды. Жидкость можно получить из других напитков, но лучше всего использовать воду, потому что она не содержит калорий, кофеина и спирта.

Семь процентов респондентов сообщили, что не пьют воду вообще каждый день, а те, кто пил мало воды, также потребляли меньше фруктов и овощей. Это говорит о том, что определенное количество людей рискуют своим здоровьем, не получая достаточного количества жидкости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *