Posted in: Разное

Езда без масла в двигателе последствия: Что будет если ездить без масла в двигателе: последствия

Содержание

Что будет если ездить без масла в двигателе: последствия

Эксплуатация9 апреля 2020

Основная задача моторного масла в двигателе – это предотвращение износа его деталей. Опытные водители знают, что будет, если ездить без масла в двигателе: в автомобильных моторах уровень силы трения настолько высок, что отсутствие смазки быстро приводит к стачиванию трущихся поверхностей. Микроскопический зазор между деформированными деталями приведет к невозможности функционирования силового агрегата.

Для чего необходимо заливать моторное масло в двигатель автомобиля?

Функция вещества состоит не только в том, чтобы смазывать шейки коленчатого вала, цилиндров, деталей газораспределительного механизма и других частей двигателя. Моторное масло также:

  • выводит тепло и продукты износа из зоны трения в картер мотора;
  • предотвращает появление коррозии при тяжелых условиях эксплуатации на открытом воздухе;
  • выводит сажу и нагар, образующийся при сгорании топлива.

Моторные масла состоят не только из нефтяной составляющей, в них могут быть различные присадки, которые должны выполнять самые разные функции. Они регулируют вязкость смазочных материалов, очищают детали двигателя от загрязнений, усиливают или, наоборот, ослабляют различные свойства маслопродукта.

Сколько километров можно проехать без масла?

Полное отсутствие смазки в работающем силовом агрегате автомобиля мгновенно приведет к катастрофическому износу его деталей и механизмов. Если мотор новый или несильно изношенный, его можно завести при отсутствии какой-либо смазки. Если не давать двигателю высокой нагрузки, то с малой скоростью можно будет проехать некоторое количество километров без критических последствий и без последующего дорогостоящего ремонта.

В 2008 г. сотрудники журнала «За рулем» провели эксперимент с эксплуатацией автомобилей без смазки. Для эксперимента взяли 2 новых автомобиля LADA с инжекторными моторами: один обработали препаратом «Супротек», образующим антифрикционную пленку на поверхности деталей мотора, другой не обрабатывали.

Из обоих агрегатов перед запуском заранее слили масло.

Необработанный присадкой двигатель начал стучать через 74 км неторопливой поездки. Обработанная присадкой Лада прошла 150 км без стуков в силовом агрегате. После этого эксперимент было решено прекратить.

Способы определения недостатка смазки

При снижении уровня смазочного материала до минимально необходимого срабатывает электронный датчик. На панели приборов загорается индикатор недостатка моторного масла, который выглядит как масленка. Бортовой компьютер или дисплей мультимедийной системы выводит текстовое сообщение о необходимости долива смазки.

Недостаток смазывающей жидкости можно определить с помощью масляного щупа, который находится под капотом. При извлечении стержня на его кончике можно увидеть 2 контрольные отметки, соответствующие нормальному и минимальному уровню смазочного материала. Если масла недостаточно, его необходимо долить.

Особенности работы мотора без масла

Проблема недостатка смазочного материала не проявляет себя до наступления критических последствий. Появившиеся стуки и писки при работе двигателя сигнализируют о дефиците или отсутствии масла в моторе и необходимости экстренной остановки.

Езда с недостаточным уровнем смазки может также сопровождаться сизым дымом из выхлопной трубы или запахом выхлопных газов из-под капота.

Какие последствия могут быть при недостаточном количестве моторного масла?

При недостатке смазки в двигателе многократно возрастает трение между подвижными частями мотора, в первую очередь – в кривошипно-шатунном механизме. Из-за этого детали быстро изнашиваются вплоть до заклинивания коленвала и невозможности спасти силовой агрегат.

Вместе с этим повышенному износу подвергаются элементы газораспределительного механизма, цепь его привода (если она имеется) и турбина нагнетателя либо компрессора, которым оснащаются некоторые автомобильные моторы. После сухой эксплуатации двигателя указанные системы и оборудование тоже могут выйти из строя.

Как и когда срабатывает сигнальная лампочка датчика давления смазки?

Если индикатор загорелся, это может говорить о:

  • низком уровне масла в картере;
  • выходе из строя датчика;
  • низком давлении смазочного материала в системе.

Во всех случаях при срабатывании этого индикатора причину начинают искать с проверки уровня моторного масла в двигателе. Если его уровень в норме, ищут и устраняют другие возможные проблемы: засорившийся маслофильтр, неисправный маслонасос и т.д.

Уровень масла в двигателе выше нормы: последствия и слив избытка

Диагностика и ремонт27 сентября 2017

Подавляющее большинство автомобилистов хорошо знает о последствиях масляного голодания для деталей силового агрегата. Но что если уровень масла в двигателе выше нормы? Судя по оживленному обсуждению проблемы на различных автомобильных форумах, подобная ситуация – вовсе не редкость. Чтобы ответить на данный вопрос, следует обратиться к многолетней практике водителей, самостоятельно обслуживающих «железных коней» в своем гараже.

Как возникает повышенный уровень смазки?

Существует несколько причин, по которым количество масла в картере силового агрегата превышает норму:

  1. Банальный перелив в процессе замены. Подобные ошибки совершает недобросовестный персонал станций технического обслуживания и небрежные хозяева автомобилей.
  2. Неисправности в системе топливоподачи, работа в аварийном режиме.
  3. В старых моделях машин – неполадки механического бензонасоса.

Первая ситуация ясна – в результате спешки или небрежности смазывающий материал заливается в двигатель выше отметки MAX, дальше мотор автомобиля эксплуатируется в таком состоянии. Второй случай сложнее: уровень в картере постепенно повышается в результате добавления не сгоревшего топлива. Процесс выглядит следующим образом:

  1. Выходит из строя лямбда-зонд или другой датчик, электронный блок управления переходит в аварийный режим и сильно обогащает воздушно-топливную смесь.
  2. Попадая в цилиндры, большое количество топлива сгорает не полностью и часть бензина стекает по стенкам в картер. Владелец машины не обращает внимания и ездит дальше.
  3. Спустя 4–6 тыс. км пробега количество смазки в поддоне прибавляется, выходят из строя свечи, автомобиль дымит и «не тянет».

Примечание. В разбавление масла горючим вносят лепту старые негодные свечи зажигания, дающие вспышку через раз. Порции бензина, не сгоревшего в камере, увеличиваются.

Бывалым водителям хорошо известна проблема со скрытой неполадкой механического бензонасоса, встречающегося на старых авто, например, ВАЗ 2101–07 «Классика». Разрыв нижней мембраны агрегата снаружи незаметен и насос продолжает работать, но часть горючего закачивает прямо в картер через отверстие приводного механизма. Результат аналогичный – повышенный уровень, а двигатель буквально «задыхается» от переобогащения парами бензина через канал вентиляции картера.

Уровень масла всегда можно проверить не выходя из машины. Достаточно иметь под рукой персональный ODB-2 автосканер. В частности, на такое способен Scan Tool Pro Black Edition.

Сканер отлично работает в качестве бортового компьютера: помимо уровня масла в режиме реального времени можно отслеживать показания со всех датчиков, нагрузку двигателя, обороты, температуру охлаждающей жидкости и многое другое. В качестве диагностического устройства Scan Tool Pro способен полностью считывать ошибки с ЭБУ (не только двигателя, но и других узлов и агрегатов). Устройство совместимо с большинством отечественных и зарубежных автомобилей, а также отличается по меркам с аналогами скромной стоимостью и простотой эксплуатации.

О последствиях перелива

Инженеры – конструкторы автомобилей не зря придумали 2 метки на щупе – MIN и MAX. Если бы верхний предел не имел значения, то производитель не ставил вторую риску. Если наливать моторную смазку сверх нормы, то рано или поздно наступят такие последствия:

  • разовое превышение уровня до 5 мм над верхней риской некритично, но при следующей замене масло надо залить согласно инструкции по эксплуатации;
  • постоянный перелив на ту же величину уменьшает ресурс коренных сальников, особенно в зимний период, когда смазывающий материал густеет;
  • при заливке на 1 см и более над максимальной меткой возникает риск выдавливания сальников коленчатого вала;
  • если количество заливаемой смазки на треть больше нормы, то она выступает из-под всех прокладок, включая клапанную крышку и верхнюю масляную пробку.

Еще с советских времен известны случаи, когда водители – новички заливали масло вдвое выше уровня. Перепутав сливные пробки, они опорожняли коробку передач, а картер двигателя дополняли второй порцией.

Приверженцы доливки «про запас» аргументируют свою позицию так: масляный насос рассчитан на определенную производительность, которую превысить не может. Значит, выдавливание прокладок – миф, а излишек смазки все равно выгорит.

В действительности производительность и давление – разные вещи

. Любой опытный водитель, обслуживавший машины с указателем давления масла вместо лампочки на приборной панели, знает: чем больше смазочного материала в картере, тем выше давление показывает манометр. Отсюда и выдавленные сальники.

Если высокий уровень смазки вызван добавлением топлива, то последствия такие:

  • материал разжижается и теряет смазывающие свойства;
  • вследствие нагрева бензин испаряется и поступает через патрубок вентиляции картера в карбюратор либо дроссельную заслонку инжектора вместе с воздухом, мотор «задыхается»;
  • горючее смывает пленку масла со стенок цилиндров.

Хотя ситуация с разбавлением моторной смазки встречается довольно редко, лучше ее избегать. Следите за работоспособностью свечей зажигания, датчиков кислорода и ДМРВ, а на старых авто регулярно проверяйте карбюратор и механический бензонасос.

Что делать с излишком масла?

Как говорилось в предыдущем разделе, одноразовое переполнение на 3–5 мм выше риски MAX к катастрофическим последствиям не приведет. В остальных случаях избыток масла необходимо сливать одним из следующих способов:

  • через пробку в поддоне картера;
  • опорожнить масляный фильтр;
  • отсосать через отверстие, куда вставляется щуп.

Существует простой платный способ: посетите автосервис, располагающий специализированным оборудованием. Там быстро откачают излишек смазывающего материала с помощью насоса.

Нормально слить часть масла через пробку – нереально. Пытаясь перекрыть струю из отверстия, забрызгаете полгаража и обольетесь сами. Способ применяется так:

  1. Возьмите чистую широкую емкость, открутите крышку картера и слейте смазку с холодного мотора. Когда струя превратится в капли, заверните пробку.
  2. Отделите избыточное количество масла. Если не представляете, как его рассчитать, отливайте 1 л.
  3. Оставшимся материалом вновь заполните картер, обождите 10 минут и замерьте уровень. При необходимости добавляйте смазку небольшими порциями.

Справка. Практические наблюдения показывают, что в легковых автомобилях с объемом двигателя до 2 тыс. см3 между метками MIN и MAX на щупе помещается примерно 1 л масла. Отсюда можно посчитать избыток, который необходимо удалить из мотора.

Второй метод отнимет меньше времени и труда. Технология такая: подстелив ветошь на дно моторного отсека, выверните масляный фильтр, опорожните его и закрутите на место, не забыв смазать резиновое кольцо. Если слитого объема недостаточно, запустите двигатель на 1–2 минуты (чтобы заполнить фильтр) и повторите операцию. Иногда возникает трудность: фильтрующий элемент не желает откручиваться, надо искать съемник.

Отсасывание избытка смазки производится так:

  1. Купите в ближайшей аптеке одноразовый шприц вместительностью 20 мл (или больше) и капельницу.
  2. Отрежьте от капельницы трубку и наденьте на носик шприца.
  3. Прогрейте двигатель до температуры 30–40 °С, дабы разжижить смазку и не обжечься в процессе работы.
  4. Выньте щуп, вставьте в отверстие трубку и протолкните до дна картера. Втяните масло, отсоедините шприц и опорожните. Повторяйте операцию и считайте откачанный объем.

Последний способ требует кропотливого труда, зато вы не обольете смазкой блок цилиндров. Контролировать уровень можно сразу, не дожидаясь, пока масло стечет в поддон.

Когда уровень моторной смазки поднялся за счет добавления бензина, вариант остается один: полная замена. Если вы не уверены в поставленном диагнозе, проверьте наличие паров топлива следующим образом: прогрейте двигатель и на холостом ходу снимите патрубок отвода картерных газов. Если работа мотора станет ровнее, уверенно меняйте масло. Перед заливкой нового смазочного материала силовой агрегат желательно промыть специальным составом, чтобы максимально удалить остатки горючего. Также не забудьте устранить причину, по которой топливо проникло в масляный отсек мотора.

Сколько километров авто проедет без масла

Как известно, для правильной работы двигателя внутреннего сгорания, требуется наличие в нём моторного масла. Объём масла может отличаться в зависимости от конструкции двигателя. А что случиться, его масло куда-то делось? Или его туда вовсе не заливать. Такая халатность, как вовремя незамеченное падение уровня масла в двигателе может привести к необратимым последствиям.

Для чего нужно масло двигателю

Моторное масло в двигателе выполняет ряд функций:

  • смазка трущихся элементов;
  • охлаждение деталей и отвод тепла;
  • образует защитную антифрикционную пленку;
  • моет двигатель;
  • собирает в себя частицы нагара и выработки деталей.

Независимо от вида масла, будь то синтетическое или минеральное, они лучше или хуже, но выполняют все эти функции. Для каждого мотора, производители выдвигают свои допуски по маслу – такое и следует заливать, чтобы двигатель работал как можно дольше. Делается это с учетом особенностей конструкции, например, в современных машинах применяются жидкие масла, так как в двигателе очень тонкие масляные каналы и зазоры.

Заливается масло в мотор строго определенного объёма. Проверяется уровень специальным щупом, выведенным из поддона картера. Так же масло необходимо менять на новое, со временем оно теряет свои изначальные свойства и характеристики. Интервал замены в среднем 10-12 тысяч километров пробега, либо если авто эксплуатируется мало, то раз год.

Важно! Обязательно следите за уровнем масла. Он не должен опускаться ниже отметки MIN на щупе. При необходимости, доливайте то же, какое уже залито.

Можно ли ездить без масла

И все же, сколько можно проехать на автомобиле без масла в двигателе. Никому не захочется проводить данный эксперимент на своей машине. Все и так знают, чем это грозит, как минимум дорогостоящим ремонтом, а то и вовсе заменой двигателя. Но подобные опыты проводились, так испытывали Mersedes C180. С него полностью слили масло, и выехали на гоночную трассу. Он проработал всего 17 минут, но на пределе своих возможностей.

Возможно, в обычных условиях он бы проработал немного дольше. Умер мотор из-за перегрева, трущиеся элемент кривошипно-шатунного механизма никак не охлаждались, от увеличения температуры уменьшались зазоры, детали терлись на сухую, образовывались задиры и двигатель клинил. Чтобы избежать подобной ситуации, чаще заглядывайте под капот, проверяйте двигатель на течи масла, уровень поддерживайте достаточным, так как масло иногда уходит на угар.

Как показывает опыт, в критической ситуации вы сможете какое-то расстояние проехать с низким уровнем или вовсе без масла в двигателе. Но в дальнейшем нужно обязательно найти причину утечки масла, произвести ремонт. Длительная эксплуатация сухого двигателя невозможна.

Последствия езды без масла в двигателе

Изобретение двигателя внутреннего сгорания стало важнейшим событием в развитии человечества. С момента разработки первого пригодного к использованию поршневого двигателя внутреннего сгорания прошло более 130 лет. От постройки опытных образцов и до наших дней система смазки совершенствовалась вместе с другими системами двигателя. Идея постройки мотора без смазки приходила в разные времена в головы многих изобретателей. Однако, агрегата, способного достаточно долго работать без смазки, пока ещё не существует.

Понятие о масляном голодании

Масляным голоданием двигателя называют недостаток смазки или эффективности смазывания сопрягаемых деталей в нагруженных узлах трения мотора. В некоторых случаях смазка может вообще не поступать к узлам трения, даже при её наличии, или проникать туда ограниченно.

Главными причинами масляного голода являются:

  1. Недостаток масла.
  2. Сильный износ агрегата.
  3. Плохое состояние системы смазки, засорение каналов, фильтров.
  4. Неисправности системы.
  5. Масло по качеству и (или) параметрам не соответствует требованиям производителя транспортного средства.
  6. Несоблюдение рекомендованного производителем температурного режима эксплуатации мотора.

Каждый автомобиль снабжён датчиком аварийного уровня масла, многие имеют указатели давления. Недостаток смазки по уровню приводит к возникновению масляного голодания, при этом масла не хватает для того, чтобы заполнить систему. Соответственно оно не поступает в достаточном количестве ко всем трущимся парам. В каналах системы образуются воздушные пробки, приводящие к резкому падению давления.

Сверхнормативный износ трущихся поверхностей двигателя приводит к увеличению допустимых зазоров в узлах трения, неспособных хорошо удерживать масляную плёнку.

Несвоевременная замена отработанного масла, использование суррогатных масел, несоблюдение технологии смены масла, неаккуратная его замена приводят к засорению масляных каналов и фильтрующих элементов. В этих случаях система смазки не способна полноценно снабжать мотор маслом.

Иногда случаются неисправности системы смазки. Если вовремя не отреагировать на показания сработавшего датчика, то, например, обрыв привода масляного насоса станет фатальным для двигателя.

Масло, не соответствующее параметрам, заявленным производителем, также заставит работать ДВС в условиях масляного голода.

Каждый силовой агрегат рассчитан на работу в определённых температурных условиях. Выход за пределы критических значений температуры неминуемо приведёт к потере нормальной работоспособности системы смазки.

Последствия масляного голода

Даже кратковременная поездка без масла, либо в условиях масляного голодания может привести к нежелательным и даже разрушительным последствиям. Вот что может произойти в этих случаях:

  • Стремительный износ деталей цилиндро-поршневой группы с потерей мощности мотора.
  • Залегание или излом поршневых колец в канавках с потерей компрессии и мощности двигателя.
  • Задиры металла на стенках цилиндров, поршней, вкладышей, шейках коленчатого вала.
  • Заклинивание поршней в цилиндрах с остановкой двигателя.
  • Разрушение поршня в цилиндре.
  • Обрыв шатуна.
  • Проворот шатунных или коренных вкладышей с заклиниванием коленчатого вала.
  • Разрушение постели распределительного вала системы ГРМ с последующим заклиниванием.
  • Обрыв привода ГРМ с разрушением клапанов и поршней.
  • Разрушение гильз и стенок блока цилиндров.
  • Прогар прокладки между блоком и головкой цилиндров в результате перегрева по причине плохого отвода тепла маслом от головки цилиндров. Коробление плоскости головки с возникновением микротрещин.
  • Прогар маслосъёмных уплотнителей на направляющих втулках клапанов, вызывающий аварийный расход масла.

Указанные выше последствия, как правило, не возникают поодиночке, а проявляются комплексно. Например, заклинивание поршня может привести к появлению задиров, разрушению тела поршня, обрыву шатуна с пробоем гильзы цилиндра и корпуса блока. Мотору потребуется дорогостоящий ремонт, по стоимости сопоставимый с ценой нового агрегата.

Часто возникают случаи, когда водитель вовремя реагирует на срабатывание указателей и останавливает мотор. Иногда это помогает избежать поломок, но всё равно приводит к неприятным последствиям. Последствия эти устраняются ликвидаций мест внезапно возникших протечек масла, прокладок, уплотнителей, поддонов и т.д.

Несвоевременная реакция может послужить причиной остановки двигателя. Серьёзность последствий будет зависеть от режима движения автомобиля во время заклинивания мотора. При движении накатом с выключенной передачей всё, скорее всего, закончится образованием задиров на поршнях и зеркале цилиндров. Может потребоваться замена поршней и расточка гильз блока цилиндров. При движении на большой скорости велика вероятность возникновения на дороге опасной аварийной ситуации с внезапной блокировкой ведущих колёс и разрушением силового агрегата до состояния его полной неремонтопригодности.

Выше приведены крайние ситуации, вызванные ездой без масла или при масляном голодании. В большинстве случаев наступают неприятные последствия, которые можно диагностировать и устранить только после полной разборки мотора.

Практические советы и пожелания

Для недопущения последствий масляного голодания современные автомобили снабжены различными системами защиты двигателя. Встречаются, как полноценные системы защиты, предотвращающие возможность запуска при нештатных режимах, так и системы предупреждения, позволяющие автомобилистам своевременно реагировать на аварийные ситуации. Однако ни одна из систем не способна дать полных гарантий. Участие человека является обязательным условием обеспечения нормальных условий для работы двигателя. Необходимо строго придерживаться следующих рекомендаций:

  1. Использовать только одобренные заводом-изготовителем ГСМ.
  2. Как можно чаще контролировать уровень масла, не допуская эксплуатации с уровнем смазки ниже отметки «min» на щупе. В идеале такая проверка должна производиться перед каждой поездкой.
  3. Замеры уровня следует производить после установки автомобиля на ровной горизонтальной площадке, с прогретым двигателем, спустя некоторое время после остановки мотора. Масло должно полностью стечь в картер.
  4. Своевременно производить доливку масла до нормы, используя только совместимые материалы.
  5. Неукоснительно соблюдать технологию замены масла.
  6. Не допускать длительных перегревов мотора, следить за состоянием системы охлаждения.
  7. Эксплуатировать автомобиль в диапазоне допустимых температур окружающей среды.
  8. При езде по сильно пересечённой местности или бездорожью не допускать ударов картером двигателя о выступающие рельефы дороги. После каждого, даже незначительного удара, останавливать двигатель с последующей проверкой на отсутствие утечек масла из поддона.

Соблюдение этих рекомендаций позволит избежать случаев езды без масла, а также предотвратить наступление режимов масляного голодания.

Похожие записи

Вот что произойдет, если завести автомобиль без моторного масла — ЗА БАРАНКОЙ

Двигатель без масла долго не протянет: Эксперимент

Юные и не очень экспериментаторы проводят свои странные опыты над автомобилями. То Coca-Cola в бак зальют вместо бензина, то этот же напиток вместо масла закачают в двигатель. Экспериментировать можно бесчисленное количество раз, меняя варианты и жидкости.

А что будет, если вообще избавить мотор машины от пары литров черной, вязкой жидкости и завести его? Что произойдет тогда?

Автомобилист со стажем сразу поймет, что пахнет жаренным! Мотор без защитной масляной пленки за считанные минуты придет в негодность. Разрушения будут иметь такие фатальные последствия, что не всегда их можно будет решить капитальным ремонтом.

Задолго до того, как тематика перешла на откуп разнообразных ютьюберов, одно британское автошоу, о котором вы наверняка слышали, Fifth Gear, провело показательный заезда на автомобиле без моторного масла, на практическом примере продемонстрировав что может произойти с бедным мотором.

Масло жизненно важно для мотора. Благодаря ему решается огромное количество крайне важных вещей. Без моторного масла двигатель обречен. Примерно в этом ключе ведущие описывали незавидное будущее авто. И ведь не врут! Моторное масло смазывает компоненты двигателя, предостерегая их от того, чтобы они не перемололи друг друга.

Оно же, масло, очищает внутренности от ненужных веществ, выводит нагар, шлаки и т.д. и т.п.

Без масла всего этого не будет происходить.

Масло было слито. Двигатель заведен и проверено время его работы, а также последствия жесточайшего масляного голодания. Первое что было услышано – постепенно нарастающий брякающий звук частей цилиндропоршневой группы. Когда его громкость перешла все разумные пределы, двигатель был продиагностирован и сделан вывод о его преждевременной кончины.

Чему этот видеоролик учит нас? Не стоит пренебрегать проверкой уровня масла в двигателе. Да, если вязкая жижа булькает в картере и хоть немного смазывает детали мотора, это не приведет к проблемам сразу. Но в определенной перспективе в будущем, непременно это произойдет. Не нужно доводить до такого результата!

Загорелась лампочка малого давления моторного масла, не поленитесь долить его. Уровень упал до критического, долейте и проверьте в чем дело, не пускайте проблему на тормозах. Иначе, можно просто уничтожить свой автомобиль. Примерно также как это было сделано здесь:

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Подписаться

Двигатель оставили без масла… — АвтоЭкспертиза.ру

Очень поучительный случай того, что происходит с мотором, когда владелец, заплатив несколько десятков тысяч долларов за машину, считает, что за такие деньги уровень масла в его моторе должен контролировать кто угодно, кроме него. Мы доказали, что двигатель просто остался без масла в результате полного отсутствия контроля его уровня в эксплуатации.

ЗАКЛЮЧЕНИЕ СПЕЦИАЛИСТА

29 декабря 2009 г. в соответствии с договором № 09 от 25.12.2009г., заключенным между ООО «СМЦ «АБ-Инжиниринг» (Бюро моторной экспертизы) и ООО «Авто Моторе», был проведен осмотр двигателя J35Z4, рабочий объем 3.5л, автомобиля HONDA PILOT YF4, VIN: 5FNYF58509B50385, год выпуска 2008, пробег на момент исследования 30369 км, и его полная разборка с целью оценки действительного состояния деталей, определения причины дефекта и подготовки заключения о возможных причинах выхода из строя двигателя.

Исследование возможных причин выхода из строя двигателя J35Z4, автомобиля HONDA PILOT YF4, VIN: 5FNYF58509B50385 и составление настоящего заключения проводил:

Хрулев Александр Эдуардович — специалист, начальник Бюро моторной экспертизы СМЦ «АБ-Инжиниринг», эксперт-автотехник 1-й категории, имеющий право на проведение автотехнических экспертных исследований (сертификат эксперта-автотехника № 001.00064.К1 от 04.07.2006 г.), образование высшее, кандидат технических наук, Генеральный директор ООО «СМЦ «АБ-Инжиниринг», стаж работы по специальности (ремонт, конструкция и эксплуатация двигателей внутреннего сгорания) — 22 года, из них экспертом-автотехником — 6 лет.

Место осмотра

Москва, ул. Строительная, д.44., автосервис ООО «Авто Моторе».

Объект исследования

Бензиновый V-образный 6-цилиндровый двигатель рабочим объемом 3,5 л J35Z4 автомобиля HONDA PILOT YF4, VIN: 5FNYF58509B50385

Владелец автомобиля — Т-ов А.В.

Заказчик исследования — ООО «Авто Моторе».

Вопросы, поставленные перед специалистом:

  1. Имеются ли в ДВС J35Z4 автомобиля HONDA PILOT YF4, VIN: 5FNYF58509В50385, какие-либо неисправности?
  2. Если неисправности имеются, то какие конкретно?
  3. Если неисправности имеются, каковы действительные причины их возникновения?
  4. Являются ли эти неисправности следствием производственного дефекта двигателя, ошибок при выполнении обслуживания автомобиля в техническом центре, либо они возникли вследствие нарушения правил эксплуатации автомобиля?
  5. Могла ли неисправность двигателя возникнуть вследствие применения моторного масла несоответствующего качества и/или его несвоевременной замены?
Задачи, поставленные перед специалистом:

Провести необходимые исследования и ответить на поставленные вопросы.

Исходная информация

Эксперту для изучения предоставлен автомобиль с неразобранным двигателем. По информации, полученной от заказчика, ранее автомобиль проходил очередное техническое обслуживание (ТО) в ООО «Авто Моторе» при пробеге 13526 км. Согласно показаниям одометра, после ТО автомобиль проехал 16843 км, после чего был доставлен в автосервис ООО «Авто Моторе» в нерабочем (заклиненном) состоянии. При этом проверка уровня масла при помощи масломерного щупа показала отсутствие масла в двигателе.

По информации владельца, двигатель после выполнения ТО работал нормально, однако в обычных условиях эксплуатации при движении автомобиля произошел самопроизвольный останов двигателя, сопровождаемый сильным ударом.

Использованная литература

  1. Хрулев А.Э. Ремонт двигателей зарубежных автомобилей. Изд-во «За Рулем», М.: 1998,-480с.
  2. Руководство по эксплуатации HONDA PILOT. Honda Motor CO., Ltd., 44SZA600 00X44-SZA-6000, 2008,- 462c.
  3. HONDA PILOT. Гарантийная и сервисная книжка. Honda Motor СО., Ltd.
  4. Повреждения поршней — как выявить и устранить их. MSI Motor Service International GmbH, Neckarsulm, Германия, 2004. — 103c.
  5. Piston Damage — Causes and Remedies. — MAHLE GmbH, Stuttgart, 1999. — 66c.
  6. Расходипотеримасла. — MSI Motor Service International GmbH, Neckarsulm, Германия, 2004. — 28c.
  7. Хрулев А.Э. «Почему застучал вкладыш?» — «Автомобиль и сервис», №12/2000.
  8. Хрулев А.Э. «Почему прогорел поршень?» — «Автомобиль и сервис», №10/2000.
  9. Хрулев А.Э. «Подшипники двигателей» — «Автомобиль и сервис», №01/1998.
  10. Мотовилин Г.В. и др. Автомобильные материалы. Справочник. — М.: Транспорт, 1989,- 464с.
  11. Хрулев А.Э. «Если двигатель стучит», ч. 1 — «Автомобиль и сервис», №08/2000.
Условные обозначения

ДВС — двигатель внутреннего сгорания.

ЦПГ— цилиндропоршневая группа, состоящая из поршня, поршневых колец и цилиндра.

ШПГ — шатунно-поршневая группа, состоящая из шатуна, поршня и поршневого пальца.

КШМ — кривошипно-шатунный механизм, состоящий из коленчатого вала, вкладышей подшипников коленвала и шатунов.

ГРМ — газораспределительный механизм, включает распределительный вал, клапаны, толкатели, пружины и др.

НГШ— нижняя головка шатуна.

ВГШ — верхняя головка шатуна.

ВМТ — верхняя мертвая точка, самое верхнее положение поршня в цилиндре.

НМТ— нижняя мертвая точка, самое нижнее положение поршня в цилиндре.

При осмотре и анализе двигателя и его деталей установлено:

Автомобиль установлен на подъемнике (рис.1), двигатель не снят и не разобран. При осмотре снизу (рис.2) выявлено масляное пятно на поддоне картера в середине (рис.З), сверху на защите картера после ее снятия обнаружен большой слой песка и грязи, замасленный в средней части (рис.4). Там же обнаружены обломки деталей из алюминиевого сплава (рис.5).

Рис. 1. Автомобиль HONDA PILOT, подготовленный к исследованию.Рис.2. Автомобиль на подъемнике для осмотра снизу.Рис.3. Масляное пятно на поддоне картера.Рис.4. На защите картера большой слой песка и грязи, замасленный в средней части.Рис.5. Обломки деталей из алюминиевого сплава, обнаруженные на защите картера.

На поддоне картера пробоина диаметром около 15 мм на боковой стенке в верхней части, приблизительно посередине продольной оси (рис.6). На днище автомобиля замасливание отсутствует (рис.7). Количество масла, слитого из поддона картера перед его снятием (рис. 8), чрезвычайно мало — около 400 см3 (рис.9), из масляного фильтра и из снятого поддона картера — приблизительно 300 см3 (рис. 10). Фильтр имеет оригинальную маркировку — оригинальный номер Honda(рис. 11). В масле, слитом из масляного фильтра, мелких частиц разрушения деталей практически не обнаружено. Масло имеет черный цвет, взяты и опломбированы 3 пробы приблизительно по 240 см3 каждая (рис. 12).

Для исследования состояния деталей двигателя был произведен демонтаж поддона картера, впускного коллектора, головок блока цилиндров, шатунно-поршневой группы и маслонасоса без демонтажа двигателя с автомобиля.

После снятия поддона внутри на масляном экране (рис. 13) и на дне поддона (рис. 14) обнаружено большое количество мелких и крупных обломков, причем масляный экран сильно деформирован в зоне расположения пробоины на поддоне. Заметного нагарообразования на стенках поддона не обнаружено.

Рис.6. Пробоина диаметром около 15 мм на боковой стенке поддона картера.Рис.7. На днище автомобиля замасливание отсутствует.Рис.8. Слив масла из поддона перед его снятием.Рис.9. Количество масла, слитого из поддона – около 400 см 3 .Рис.10. Количество масла, слитого из масляного фильтра – около 200 см 3 Рис.11. Оригинальный номер Honda на масляном фильтре.Рис.12. Опломбированная проба масла – всего взято 3 таких пробы.Рис.13. Мелкие и крупные обломки на масляном экране поддона картера.Рис.14. Большое количество мелких и крупных обломков в поддоне картера.

Коленчатый вал заклинен в результате попадания поршневого пальца 4-го поршня (здесь и далее для удобства принята нумерация цилиндров по порядковому номеру шатунных шеек коленвала) между противовесом коленчатого вала и стенкой блока (рис. 15), после удаления пальца вращение коленвала восстановлено, но с заметным моментом страгивания, что косвенно свидетельствует о деформации коленвала.

3-я шатунная шейка сильно перегрета (рис. 16) и имеет характерный черный цвет (рис. 17), нижняя головка шатуна на шейке отсутствует, шатун 3-го цилиндра полностью разрушен. Шатун 4-го цилиндра оборван по средней части стержня, нижняя головка шатуна (НГШ) осталась на шейке и свободно вращается (рис. 18). Верхняя часть 4-го шатуна (рис. 19) пробила отверстие в стенке блока и расположена между блоком и катализатором левой передней головки блока, в результате удара верхняя головка 4-го шатуна значительно деформирована. Остальные шатунные шейки не имеют визуальных повреждений.

Рис.15. Коленчатый вал заклинен в результате попадания поршневого пальца 4-го поршня между щекой коленчатого вала и стенкой блока.Рис.16. Перегрев 3-й шатунной шейки.Рис.17. Характерный черный цвет перегретой шатунной шейки.Рис.18. Нижняя головка 4-го шатуна осталась на шейке и свободно вращается.Рис.19. Верхняя часть 4-го шатуна значительно деформирована.

Поршень 4-го цилиндра разрушен, при этом верхняя часть поршня 4-го цилиндра с кольцами расположена в цилиндре (рис.20 и 21), остальные обломки поршня обнаружены в поддоне картера. Поршень 3-го цилиндра с обломком шатуна находится в цилиндре, при осмотре поршня обнаружена деформация верхней части поршня (рис.22).

Рис.20. Левая часть блока цилиндров с разрушенным поршнем 4-го цилиндра.Рис.21. Разрушенный поршень в 4-м цилиндре.Рис.22. Верхняя часть поршня 4-го цилиндра.

Блок цилиндров имеет 3 пробоины в плоскости качания 3-4 шатунов — из них 2 пробоины на боковых стенках ближе к нижней плоскости (рис.23 и 24) и 1 пробоина в развале цилиндров (рис.25), обнаруженная после снятия впускного коллектора. 4-й цилиндр поврежден многочисленными ударами по поверхности (рис.26). Состояние остальных цилиндров удовлетворительное (рис. 27, 28 и 29), имеются отдельные блестящие полосы (риски) преимущественно в средней и нижней части цилиндров.

Рис.23. Пробоина в плоскости качания 3-го шатуна на боковой стенке ближе к нижней плоскости.Рис.24. Аналогичная предыдущему рис.23 пробоина в плоскости качания 4-го шатуна.Рис.25. Пробоина в развале цилиндров.Рис.26. 4-й цилиндр поврежден многочисленными ударами по его поверхности.Рис.27. Состояние 1, 3 и 5-го цилиндров — удовлетворительное.Рис.28. Состояние 2-го цилиндра — удовлетворительное.Рис.29. Состояние 6-го цилиндра — удовлетворительное.

Обломки нижней части 3-го шатуна сильно перегреты и пластически деформированы, шатунные болты вытянуты и оборваны по плоскости разъема крышки (рис.30).

После демонтажа поршней и шатунов из блока цилиндров установлено, что шатунные вкладыши 1-го и 2-го цилиндров имеют следы разрушения антифрикционного слоя в начальной стадии (рис.31 и 32), характерные блестящие участки имеются и на шатунных вкладышах 4, 5 и 6-го цилиндров (рис.33, 34, 35). Вкладыши 3-го цилиндра полностью разрушены и имеют следы сильного перегрева, плавления и деформации (рис. 36).

Рис.30. Обломки нижней части 3-го шатуна сильно перегреты и пластически деформированы, шатунные болты вытянуты и оборваны по плоскости разъема крышки.Рис.31. Шатунные вкладыши 1-го цилиндра имеют явные следы разрушения антифрикционного слоя в начальной стадии.Рис.32. Аналогично для шатунных вкладышей 2-го цилиндра.Рис.33. Характерные блестящие участки имеются на шатунных вкладышах 4-го цилиндра.Рис.34. То же на вкладышах 5-го цилиндра.Рис.35. То же на вкладышах 6-го цилиндра.Рис.36. Вкладыши 3-го цилиндра полностью разрушены и имеют следы сильного перегрева и деформации.

Поршень 4-го цилиндра полностью разрушен (рис.37). Поршни 1, 2, 5 и 6 цилиндров в целом в норме (рис.38), поршневые кольца нормально подвижны в канавках, наличие небольшого слоя нагара на днище и боковых поверхностях поршней также соответствует норме (рис.39-42). Поршень 3-го цилиндра визуально в удовлетворительном состоянии, однако деформация днища вследствие ударов о стенку камеры сгорания привела к заклиниванию верхнего кольца и ограниченной подвижности остальных колец на этом поршне (рис.43). Выборочная проверка поршневых колец остальных поршней путем визуального осмотра и установки их в цилиндры не показала дефектов и износов колец (рис.44-46).

Рис.37. Поршень 4-го цилиндра полностью разрушен.Рис.38. Поршни 1, 2, 5 и 6 цилиндров в целом в норме.Рис.39. Наличие небольшого слоя нагара на боковых поверхностях поршня 1-го цилиндра соответствует норме.Рис.40. То же для поршня 2-го цилиндра.Рис.41. То же для поршня 5-го цилиндра.Рис.42. То же для поршня 6-го цилиндра.Рис.43. Поршень 3-го цилиндра визуально в удовлетворительном состоянии, однако имеется заклинивание верхнего кольца и ограниченная подвижность остальных.Рис.44. Проверка износа верхнего поршневого кольца путем установки в цилиндр.Рис.45. Проверка износа среднего поршневого кольца путем установки в цилиндр.Рис.46. Проверка износа диска маслосъемного кольца путем установки в цилиндр.

При осмотре снятых головок блока цилиндров на поверхностях камер сгорания не выявлено повышенного нагарообразования, а также заметной разницы в цвете нагара на деталях, что свидетельствует о нормальной работе цилиндров двигателя непосредственно перед поломкой (рис.47). Головка блока цилиндров правого (по оси коленвала) ряда цилиндров имеет одинаковое состояние поверхности клапанов (рис.48), однако клапаны 3-го цилиндра деформированы вследствие удара поршня (рис.49).

Рис.47. На поверхностях камер сгорания не выявлено повышенного нагарообразования, а также заметной разницы в цвете нагара на деталях.Рис.48. Головка блока цилиндров правого (по оси коленвала) ряда цилиндров имеет одинаковое состояние поверхности клапанов.Рис.49. Клапаны 3-го цилиндра деформированы вследствие удара поршня.

Головка левого ряда цилиндров имеет аналогичное состояние камер сгорания и клапанов, при этом камера сгорания 4-го цилиндра замаслена (рис.50). Все клапаны 4-го цилиндра деформированы, на них также имеются следы касания поршня (рис.51).

Рис.50. Камера сгорания 4-го цилиндра замаслена.Рис.51. На всех клапанах 4-го цилиндра имеются следы касания поршня.

Во впускных каналах впускного коллектора и головки блока нагара нет, но есть замасливание в канале 4-го цилиндра (рис.52 и 53). Газораспределительный механизм головок блока визуально не имеет дефектов (рис.53). В выпускных каналах также нет нагара. Приемный патрубок катализатора правого ряда цилиндров не имеет следов нагара и/или масла (рис.54).

Рис.52. Замасливание во впускном канале 4-го цилиндра.Рис.53. Замасливание впускного канала 4-го цилиндра в головке блока.Рис.54. Приемный патрубок катализатора правого ряда цилиндров не имеет следов нагара и/или масла.

На внутренней поверхности клапанных крышек слой нагара незначителен (рис. 55), при этом на правой крышке слой нагара имеет мазеобразную консистенцию на части поверхности, что связано с более высокой температурой этой крышки, расположенной ближе к стенке моторного отсека.

Рис.55. На внутренней поверхности клапанных крышек слой нагара незначителен.

Шестерни (рис.56), корпус (рис.57), крышка корпуса (рис.58) и редукционный клапан (рис.59) маслонасоса в норме, плунжер редукционного клапана подвижен, визуально никаких дефектов не выявлено. Сетка маслоприемника чистая (рис.60).

Рис.56. Шестерни маслонасоса в норме.Рис.57. Корпус маслонасоса в норме.Рис.58. Крышка корпуса маслонасоса в норме.Рис.59. Редукционный клапан маслонасоса в норме.Рис.60. Сетка маслоприемника чистая.

В корпусе воздушного фильтра (рис. 61), на фильтроэлементе (рис.62) и воздуховодах (рис.63) следов масла не выявлено.

Рис.61. В корпусе воздушного фильтра следов масла не выявлено.Рис.62. Фильтроэлемент воздушного фильтра чистый.Рис.63. Воздуховоды впускной системы чистые.

Работоспособность системы сигнализации недостаточного давления масла проверена путем подключения снятого датчика недостаточного давления масла (рис.64) и подачи в него давления воздуха (рис.65) — при этом сигнал недостаточного давления на приборной панели (рис.66) погас (рис.67), что свидетельствует об исправной работе системы.

Рис.64. Подключение датчика недостаточного давления масла.Рис.65. Подача давления воздуха в датчик.Рис.66. Сигнал недостаточного давления на приборной панели при подключении датчика.Рис.67. Погасание лампы недостаточного давления при подаче в датчик давления воздуха.

Также при диагностике системы управления двигателем, проведенной с помощью прибора TablePC, в памяти блока управления ДВС обнаружен код неисправности Р3400 — система приостановила работу клапанов (VPS) в связи с переходом в защитный режим в положении «включено».

Таким образом, ответы на 1-й и 2-й вопросы экспертизы:

  1. Имеются ли в ДВС J35Z4 автомобиля HONDA PILOT YF4, VIN: 5FNYF58509B50385 какие-либо неисправности?
  2. Если неисправности имеются, то какие конкретно?
следующие:

Двигатель J35Z4 автомобиля HONDA PILOT YF4, VIN: 5FNYF58509B50385 имеет серьезные неисправности и поломки.

На поддоне картера пробоина диаметром около 15 мм в верхней части. Количество масла, слитого из двигателя, чрезвычайно мало — около 700 см3. Блок цилиндров имеет 3 пробоины. Коленчатый вал деформирован и заклинен в результате попадания поршневого пальца 4-го поршня между щекой коленчатого вала и стенкой блока. 3-я шатунная шейка сильно перегрета и имеет характерный черный цвет, нижняя головка шатуна на шейке отсутствует, шатун 3-го цилиндра полностью разрушен, вкладыши 3-го цилиндра полностью разрушены, их фрагменты имеют следы сильного перегрева, плавления и деформации. Обломки нижней части 3-го шатуна сильно перегреты и пластически деформированы. Шатун 4-го цилиндра оборван по средней части стержня. Поршень 4-го цилиндра полностью разрушен, а поршень 3-го цилиндра деформирован. Клапаны 3-го и 4-го цилиндров также деформированы вследствие удара поршней. Остальные детали имеют незначительные дефекты или не имеют их вообще.

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

Для ответа на 3 и 4-й вопросы экспертизы:

  1. Если неисправности имеются, каковы действительные причины их возникновения?
  2. Являются ли эти неисправности следствием производственного дефекта двигателя, ошибок при выполнении обслуживания автомобиля в техническом центре, либо они возникли вследствие нарушения правил эксплуатации автомобиля?
необходимо подробно рассмотреть особенности работы двигателя и условия, при которых возможно возникновение описанных выше неисправностей.

Согласно многолетнему опыту эксплуатации и ремонта большого числа двигателей [1,7], разрушение 3-го шатунного подшипника (нижняя головка шатуна, шатунная шейка и вкладыши), сопровождаемое сильным перегревом, потерей прочности и разрушением 3-го шатуна, является главной и единственной причиной поломки двигателя. Все прочие дефекты и поломки, в том числе, разрушение 4-го шатуна и поршня, деформация клапанов, пробоины в стенках блока и поддона картера, являются вторичными и произошли как последствия первичного разрушения 3-го шатуна. При этом 3-я шатунная шейка коленчатого вала, 3-й шатун и шатунные вкладыши 3-го шатуна имеют вид, характерный для работы в так называемом режиме масляного голодания [1,7].

Данный режим первоначально возникает при недостаточной подаче масла к трущимся поверхностям подшипника, в результате чего при заданной нагрузке масляная пленка становится тоньше. Помимо этого, уменьшение подачи масла в подшипник приводит к ухудшению отвода тепла и повышению температуры масла и самого подшипника, что еще больше уменьшает толщину пленки и вызывает сильный разогрев подшипника от трения непосредственно контактирующих деталей — вкладыша и шейки коленвала.

Подшипники коленчатых валов современных двигателей [9] являются подшипниками скольжения и образованы парой «твердая шейка коленвала — мягкий вкладыш». Другими словами, шейка чугунного или стального коленчатого вала вращается во вкладышах, выполненных из многослойной ленты со стальной основой и мягким антифрикционным материалом. В рассматриваемом двигателе этим материалом является сплав алюминия с оловом и дополнительным тонким (около 0,03 мм) и мягким покрытием [1,9] типа сплава олова со свинцом — так называемого баббита, имеющего очень хорошие антифрикционные свойства (низкое трение), что хорошо видно на рис.68. Данная конструкция вкладышей применяется в настоящее время на самых высокофорсированных двигателях. Как и все мягкие материалы, антифрикционное покрытие имеет сравнительно низкую температуру плавления — около 300°С [1], определяемую низкой температурой плавления олова и свинца.

Рис.68. Разрушение тонкого антифрикционного баббитового слоя вкладышей – при увеличении рис.31.

Зазор в подшипнике — между вкладышем и шейкой, составляет в среднем около 0,03- 0,04 мм, в этот зазор под давлением подается масло. В нормальных условиях работы масло заполняет зазор между валом и вкладышем полностью, однако под действием нагрузки вал смещается от оси подшипника ближе к одной стороне. При этом за счет сужения зазора и вращения вала масло затягивается в зазор и полностью разделяет поверхности, препятствуя их непосредственному соприкосновению (так называемый эффект «масляного клина» [1,7]). Чем больше нагрузка, зазор и чем меньше частота вращения вала, давление подачи и вязкость масла, тем сильнее происходит смещение вала от оси подшипника ближе к его поверхности (рис. 69).

Рис.69. Смещение вала в подшипнике под действием нагрузки и эффект масляного клина.

При определенных условиях (большая нагрузка и/или малое давление подачи масла) происходит соприкосновение поверхностей по микронеровностям — так называемый режим полужидкостного трения (рис. 70). В эксплуатации работа в таком режиме для подшипников коленвала характеризуется появлением блестящих отполированных участков на вкладыше — такие участки видны на всех шатунных вкладышах (рис.31-35). Однако это еще не приводит к разрушению подшипника, если контакт деталей происходит кратковременно, по относительно небольшой поверхности, а температура на поверхности вкладыша невысока.

Дальнейшее уменьшение подачи масла (и/или рост нагрузки на вал) вызывает расширение зон соприкосновения деталей и дальнейший разогрев их поверхностей. При наличии на вкладышах дополнительного тонкого антифрикционного слоя (как в рассматриваемом двигателе) этот слой может быть поврежден так, как это видно на рис.31-35. Далее, в определенный момент происходит переход в так называемый режим граничного трения [1,7], и начинается плавление рабочего слоя вкладыша, что в условиях непосредственного контакта вала с вкладышем приводит к переносу расплавленного рабочего слоя вкладыша на поверхность шейки вала. Одновременно с этим расплавленный антифрикционный материал вкладыша выжимается под действием рабочей нагрузки к краям вкладыша.

Рис.70. Основные режимы работы подшипников скольжения.

Необходимо отметить, что при работе двигателя на низких оборотах и нагрузках на данной стадии расплавлении подшипника и взаимного переноса материала может произойти заклинивание вала в подшипнике за счет приваривания их друг к другу. Однако на высоких оборотах и у мощных многоцилиндровых двигателей такой эффект наблюдается редко, поскольку при большой развиваемой мощности двигатель легко преодолевает любую дополнительную силу сопротивления, сопутствующую разрушению вкладышей.

Режим масляного голодания всегда характеризуется ростом температуры подшипника, и на деталях всегда есть признаки поверхностного перегрева. Так, на всех вкладышах 1, 2, 4-6 шатунных шеек блестящие участки и отслаивание покрытия вызваны комплексным воздействием нагрузки и повышенной температуры, которые, однако, не привели к серьезным дефектам. В то же время 3-я шатунная шейка коленвала имеет все признаки чрезмерно сильного перегрева (рис. 16, 17). Поверхность шейки и примыкающих к ней противовесов коленвала имеют характерный цвет металла, подвергнутого нагреву до очень высокой температуры (свыше 600-700°С), с последующим медленным охлаждением. Кроме того, в смазочном отверстии шейки, а также на противовесах вала вблизи нее отсутствует нагар и следы коксования масла. Это означает, что в процессе сильного нагрева температура шейки была настолько высока, что нагар, который неизбежно образуется в результате коксования масла при нагреве детали до температуры выше 300-350°С, полностью выгорел с поверхности. Так, анализ рис. 16 показывает, что смазочное отверстие полностью чистое, в то время как согласно практике эксплуатации и ремонта [1] аналогичные повреждения коленчатого вала обычно характеризуются меньшими температурами и нередко сопровождаются отложением нагара на поверхностях, прилегающих к поврежденной шейке.

Данный факт дополнительно подтверждает предположение об очень высокой температуре шейки вала, вызванной работой двигателя с поврежденным шатунным подшипником под большой нагрузкой и сравнительно высокими частотами вращения (несмотря на достаточно сильный стук, характерный для такой неисправности).

После разрушения шатунов и поршня произошло остывание деталей без подачи к ним масла. В металлургии данный режим называется высоким (высокотемпературным) отпуском [10], при котором после сильного нагрева происходит медленное охлаждение детали в окружающей среде. Во время высокого отпуска на воздухе стальные детали окисляются, приобретая характерный цвет, соответствующий показанному на рис. 16-18.

Помимо этого, внутри двигателя при его нормальной работе возникает так называемый «масляный туман» — вследствие интенсивного разбрызгивания масла вращающимися и поступательно движущимися деталями более крупные капли масла дробятся на более мелкие. При этом внутренние детали под воздействием капель масла всегда имеют характерный замасленный вид, особенно, в нижней части двигателя. Поскольку 3-я шатунная шейка и примыкающие к ней противовесы остались практически сухими, это означает, что поступление масла на поверхность отсутствовало или было крайне незначительно. Такая картина возникает только при существенном нарушении подачи масла в двигатель — в том числе, при очень малом количестве масла в поддоне картера.

Поскольку вкладыши подшипников представляют собой тонкостенные детали, сильный нагрев одной их стороны (внутренней) на начальном этапе разрушения всегда вызывает появление остаточной деформации, в результате которой происходит сжатие перегретых вкладышей по форме окружности с меньшим радиусом, чем исходный. Далее, мягкий антифрикционный материал плавится и выдавливается с поверхности вкладыша, после чего начинается непосредственный контакт шейки вала со стальной основой вкладыша.

Подшипник, получивший такие значительные повреждения, резко меняет режим работы, даже если подача масла будет восстановлена до нормального уровня. За счет значительного уменьшения толщины антифрикционного материала вкладыша резко увеличивается рабочий зазор между вкладышем и шейкой вала — с 0,05 мм до 0,2-0,5 мм и более.

При таком большом зазоре подшипник работает со стуком, поскольку масло не может заполнить все пространство в зазоре между валом и вкладышами и сохраняться там в течение всего времени работы. Вследствие того, что нагрузка на вал со стороны шатуна носит знакопеременный характер (сила на подшипник от давления газов сменяется противоположно направленной силе инерции от масс шатуна и поршня), масляный клин в подшипнике, работающем с чрезмерно большим зазором, разрушается. Это вызывает ударное соприкосновение вала и вкладыша в точках изменения знака нагрузки на противоположную, что характерно для нижней и верхней мертвых точек положения поршня [11]. Именно в этих положениях возникают ударные нагрузки в подшипнике, хорошо слышимые в двигателе, как стук.

Рис.71. Усилия, действующие на шатун и вызывающие ударные нагрузки и стук при большом зазоре в подшипнике.

Характерно, что при работе с большим зазором ударные нагрузки на верхний и нижний шатунные вкладыши имеют различный характер (рис.71 и 72). Так, верхний вкладыш воспринимает большую часть нагрузки от силы давления газов, которая имеет сравнительно большую длительность по углу поворота коленвала. Напротив, нижний вкладыш испытывает, в основном, нагрузки от сил инерции шатуна и поршня. Этим может объясняться разница в повреждениях и степени износа нижнего и верхнего вкладышей в данной фазе разрушения.

Ударные нагрузки вызывают быстро прогрессирующий износ вкладышей, в результате которого в масло из зоны контакта поступает большое количество крупных частиц антифрикционного материала. Эти частицы подхватываются другими деталями и разносятся в зоны контакта других пар трения. Однако вследствие низкой твердости материала рабочего слоя вкладышей заметного износа других деталей, как правило, не наблюдается.

Так, на стенках цилиндров явно видны продольные блестящие полосы (рис.28, 44- 46), которые возникли при попадании мягких частиц — продуктов разрушения антифрикционного слоя вкладышей, на поверхность цилиндров в результате разбрызгивания масла коленчатым валом. Данный дефект поверхности имеет очень малую глубину — доли микрона, и фактически связан с полировкой поверхности цилиндра мягкой частицей, попавшей в зазор между юбкой поршня и цилиндром. Напротив, отдельные более глубокие риски связаны с попаданием на стенку твердых стальных частиц при разрушении основы вкладышей. Указанная причина повреждения цилиндров подтверждается тем, что 3-й (средний) цилиндр имеет больше рисок на стенке (рис.45), чем крайние (рис.44 и 46), поскольку основной источник образования и распространения частиц располагался в средней части двигателя на 3-й шатунной шейке.

Рис.72. Изменение направления ударных нагрузок на шатунную шейкпри повороте коленчатого вала.

Помимо этого, при значительном уменьшении подачи масла к коленчатому валу ухудшается и разбрызгивание масла, поступающего к подшипникам. В результате количество масла, попадающего на стенки цилиндров, также уменьшается. Однако юбки поршней исследуемого двигателя имеют специальное антифрикционное покрытие на основе графита (рис.39), обеспечивающего надежную работу ЦПГ даже в условиях недостаточной смазки. В соответствии с этим повреждения юбок поршней и цилиндров (риски) были обусловлены главным образом попаданием на цилиндры частиц разрушенных деталей, а не задирами от недостатка смазки.

После полного разрушения рабочего слоя и начала контакта шейки вала со стальной основой вкладыша износ приобретает катастрофически быстрый характер, однако без явных повреждений большинства других трущихся пар двигателя, поскольку частицы разрушения достаточно крупные и, попадая в масло, задерживаются сеткой маслоприемника или масляным фильтром.

При значительном уменьшении уровня масла существенно ниже минимально допустимого заборное отверстие маслоприемника периодически оказывается выше уровня масла, силы всасывания на входе в маслоприемник резко уменьшаются за счет захвата воздуха на всасывании и оказываются недостаточными для поднятия крупных частиц со дна поддона картера. Кроме того, крупные частицы, прилипающие к сетке за счет сил всасывания, под действием силы тяжести легко падают обратно в поддон при захвате маслоприемником воздуха. Этим объясняется тот факт, что маслоприемник остался чистым (рис.60), несмотря на большое количество частиц разрушения деталей в поддоне.

На этом этапе, когда антифрикционный материал вкладыша полностью разрушен, нагрев деталей резко возрастает, тонкая стальная основа вкладышей разогревается до очень высоких температур (свыше 600-800°С). При такой температуре стальная основа вкладышей теряет прочность, что обычно приводит к чрезвычайно быстрому износу основы и выпадению остатков вкладышей из нижней головки шатуна.

Рис.73. Инструкция по эксплуатации автомобиля HONDA PILOT с указанием допустимого расхода масла и технологии проверки его уровня.

С другой стороны, сильный нагрев шатунного подшипника всегда вызывает перегрев нижней головки шатуна. При этом металл шатуна теряет прочность, что может вызвать обрыв шатуна по любому из сечений нижней головки. Кроме того, в результате нагрева теряют прочность и шатунные болты, что может привести к их деформации и обрыву. Как это следует из рис. 30, в рассматриваемом двигателе произошел именно обрыв болтов, поскольку обломки болтов имеют очень большую остаточную деформацию. При этом фрагменты нижней головки шатуна (рис.30) и шатунных вкладышей (рис.36) имеют характерный перегретый вид, что подтверждает тот факт, что подшипник 3-го шатуна испытывал сильный нагрев при работе в режиме масляного голодания.

Рис.74. Рекомендации о сроках проверки уровня масла в сервисной книжке автомобиля HONDA PILOT.

При обрыве болтов нагретые до высокой температуры крышка и нижняя головка шатуна принимают произвольное положение, что вызывает их разрушение при попадании между вращающимися противовесами коленвала и неподвижными стенками. При этом ударная локальная нагрузка на стенку блока может быть настолько велика, что попавший между коленвалом и стенкой обломок пробьет стенку блока насквозь (что и произошло в исследуемом двигателе — см. рис.23-25). Одновременно обломки деталей попали под противовес коленвала и масляный экран, что привело к его деформации и пробоине на поддоне картера. Кроме того, на данном двигателе шатунная шейка соседнего 4-го цилиндра расположена рядом с 3-й шатунной шейкой, поэтому разрушенные детали легко попали в плоскость качания 4-го шатуна между шатуном и стенкой блока цилиндров. В результате произошло разрушение этого шатуна в средней части, сопровождаемое разрушением 4-го поршня от чрезмерно большой боковой нагрузки и повреждение поверхности 4-го цилиндра обломками деталей. Поршень с обломком шатуна в 3-м цилиндре и часть поршня в 4-м цилиндре далее были вытолкнуты вверх и достали до клапанов в фазе их открытия, что вызвало их деформацию. Далее в процессе разрушения поршня 4-го цилиндра поршневой палец вышел из обломка верхней головки шатуна, провалился вниз и, попав между противовесом коленвала и стенкой блока, вызвал заклинивание двигателя. Через обломки поршня 4-го цилиндра масло поступило вверх к камере сгорания, при этом открытие клапанов создало в верхней части 4-го цилиндра условия, при которых масло поступило далее во впускной и выпускной каналы, в результате чего эти каналы и камера сгорания 4-го цилиндра оказались замаслены.

Именно такая картина является полностью соответствующей исследуемому двигателю, при этом найденные повреждения деталей полностью подтверждает описанный выше характер неисправности.

Таким образом, причиной неисправности двигателя, сопровождаемой разрушением вкладышей, шатунов и поршня с перегревом и повреждением шатунной шейки коленвала, является масляное голодание.

Однако характер повреждений не дает ответа на вопрос о причине возникновения режима масляного голодания и связанного с ним нарушения подачи масла. Поэтому для окончательного ответа на третий и последующие вопросы экспертизы необходимо более подробно рассмотреть все возможные причины, которые могут привести к повреждению шатунного вкладыша.

Причины, которые могут, в свою очередь, привести к возникновению режима масляного голодания в эксплуатации, можно разделить на 3 группы:

  1. Причины, связанные с дефектами производства отдельных деталей двигателя (в том числе, вкладышей подшипников коленчатого вала и сопряженных деталей).
  2. Причины, связанные с нарушениями подачи масла в системе смазки вследствие дефектов деталей и узлов системы смазки и/или сопряженных и прочих элементов конструкции двигателя.
  3. Причины, связанные с недостаточным количеством масла в двигателе в отдельные периоды его эксплуатации.
Поскольку кроме повреждения шатунных вкладышей 3-го шатуна никаких серьезных дефектов других вкладышей обнаружить не удалось (за исключением начальной фазы разрушения антифрикционного слоя), необходимо в 1-ю очередь рассмотреть поврежденные вкладыши с точки зрения возможного дефекта изготовления этих деталей.

Как известно [1], при определенных условиях рабочий слой вкладыша подвержен усталостному разрушению, при котором происходит выкрашивание частиц материала с образованием на рабочей поверхности дефектов в виде глубоких раковин. Усталостное разрушение характерно для переменной нагрузки при количестве циклов нагружения- раз гружения приблизительно около 105—106 и более циклов [1]. Пробегу автомобиля 30000 км со средней скоростью 40 км/час и частотой коленчатого вала двигателя 2000 об/мин соответствует приблизительно 108 циклов, что косвенно может подтвердить предположение о возможном усталостном характере разрушения вкладыша.

Однако, согласно практике эксплуатации и ремонта, усталостное разрушение вкладыша не носит быстрого и тем более мгновенного характера — при таком виде разрушения происходит постепенное, достаточно медленное разрушение рабочего антифрикционного слоя (так называемое усталостное выкрашивание [1]).

Начало разрушения вкладыша, в случае его производственного дефекта, может вызвать попадание частиц разрушения в зазор и последующий ускоренный износ обоих вкладышей. В этом случае попадание частиц, отделившихся от рабочего слоя вкладыша, в зазор между вкладышами и шейкой вала может вызвать также прилипание этих частиц к рабочей поверхности вкладыша и непосредственный их контакт с поверхностью шейки коленвала. В результате этого происходил бы локальный перегрев в зоне непосредственного контакта деталей, на валу образуются следы внедрившегося материала вкладыша, а также темные полосы перегрева. Вкладыши других подшипников при этом могут получить незначительные повреждения от мелких мягких частиц разрушения вкладыша 3-го шатуна, прошедших через фильтроэлемент масляного фильтра или через байпасный клапан фильтра.

Процесс разрушения в его начальный период в этом случае может носить довольно медленный характер — несколько тысяч километров пробега, далее за счет расширения зоны повреждений происходит уменьшение опорной поверхности вкладыша, для нормальной работы которого (без непосредственного контакта деталей) требуется все большее давление, подача и вязкость масла. В определенный момент нормальной подачи масла оказывается недостаточно, чтобы скомпенсировать чрезмерно возросшие удельные (на единицу опорной поверхности) нагрузки, возникает режим масляного голодания, и подшипник переходит в режим работы с непосредственным соприкосновением трущихся деталей. После этого начинается интенсивный износ вкладышей, причем по мере отрыва новых частиц от рабочего слоя износ все более прогрессирует, пока зазор в подшипнике не выходит за допустимые пределы. Дальнейшая работа подшипника с увеличенным рабочим зазором в течение последующих нескольких сотен километров пробега вызывает появление стука, быстро прогрессирующего во времени вместе с увеличением рабочего зазора.

Фактически наступление режима масляного голодания в данном случае может явиться следствием разрушения части рабочего слоя вкладыша, которое занимает определенное время (несколько тысяч километров пробега), однако дальнейший ускоренный износ происходит уже вследствие наступления этого режима и занимает в десятки раз меньшее время.

Подтверждением данной версии, а именно, усталостного характера разрушения шатунного вкладыша 3-го шатуна, могли бы стать следующие признаки: очень мелкая стружка, осевшая на дне поддона картера в течение длительного времени износа. внедрение мелких частиц в рабочий слой других вкладышей, наличие мелких частиц в масляном фильтре, а также характерная полированная поверхность цилиндров и внедренные в поверхность юбок поршней мелкие частицы. Однако детали двигателя не имеют данных признаков, что говорит о том, что разрушение вкладыша произошло в течение сравнительно короткого времени.

Таким образом, предположение о заводском дефекте вкладышей не соответствует характеру износа и повреждения деталей и не является достоверным применительно к исследуемому двигателю.

Другой возможной причиной может быть нарушение подачи масла вследствие дефекта агрегатов и элементов системы смазки, в 1-ю очередь — масляного насоса и маслоприемника. Среди наиболее распространенных дефектов данного типа — заклинивание редукционного клапана, поддерживающего в системе смазки заданное давление, а также коксование (засорение) сетки маслоприемника. Однако исследование деталей маслонасоса и маслоприемника не подтверждают эту версию — редукционный клапан маслонасоса полностью исправен, какие-либо следы заеданий, заклинивания или прочих дефектов отсутствуют, маслоприемник чистый, а незначительные полосы на рабочей поверхности корпуса маслонасоса не являются дефектом и образовались в результате попадания в насос частиц разрушенного антифрикционного слоя вкладышей (рис.57). Кроме того, в поддоне картера найдены только частицы разрушенных деталей, при этом частицы нагара, которые могли бы вызвать засорение сетки маслоприемника, отсутствуют, а количество нагара на внутренних стенках других деталей двигателя незначительно, чтобы вызвать образование крупных частиц нагара и попадание их в масло.

Таким образом, предположение о дефекте в системе смазки также не соответствует состоянию деталей, подобный дефект не может быть причиной неисправности исследуемого двигателя.

В целом оба предположения не соответствуют характеру износа и повреждения деталей, неисправность двигателя не имеет причинно-следственной связи с его производством, то есть неисправность двигателя не связана с каким-либо заводским дефектом.

Третьей возможной причиной возникновения найденных неисправностей двигателя может явиться непосредственно масляное голодание, возникающее при полностью исправных узлах и агрегатах двигателя и системы смазки. В эксплуатации такой режим может возникнуть вследствие различных причин.

Наиболее частой причиной нештатной работы системы смазки является падение уровня масла ниже минимально допустимого, соответствующего метке «MTN» на масломерном щупе или моменту срабатывания датчика недостаточного уровня масла (для автомобилей, оборудованных таким датчиком). Для рассматриваемого случая владелец автомобиля мог ориентироваться только на масломерный щуп, поскольку сигнализация о недостаточном уровне масла не предусмотрена в данной комплектации автомобиля.

Как известно, производитель указывает максимально допустимый расход масла в двигателе до 1 л масла за 1000 км пробега автомобиля [2,3]. При этом владелец автомобиля обязан контролировать количество масла в двигателе регулярно, особенно в начальный период эксплуатации. Инструкция по эксплуатации и сервисная книжка автомобиля HONDA PILOT [2,3] дают рекомендацию проверять уровень масла перед каждой поездкой.

Обычно за время эксплуатации расход масла постепенно уменьшается за счет приработки деталей. Однако при отсутствии контроля над уровнем масла со стороны водителя и при условии, что последнее техническое обслуживание было выполнено при пробеге около 13500 км, за промежуток между этим ТО и обнаружением дефекта двигателя (около 16800 км) падение уровня масла ниже минимально допустимого представляется эксперту вполне вероятным.

Исследование деталей цилиндропоршневой группы, проведенное в рамках данной работы, не выявило каких-либо отклонений деталей от нормы, как в части внешних признаков, так и в их размерах, которые могли бы вызвать повышенный расход масла двигателя. Кроме того, отсутствие масла в корпусе воздушного фильтра (рис.61), на фильтроэлементе (рис.62) и воздуховодах впускной системы (рис.63), а также в приемном патрубке катализатора (рис.54) однозначно свидетельствует о том, что состояние цилиндропоршневой группы на момент поломки было нормальным, давление в картере двигателя и расход масла, определяемые состоянием деталей цпг, не были повышенными. Вместе с тем из практики известно [1,6], что установление причин расхода масла в двигателе менее 0,3 л на 1000 км не только крайне затруднительно, но чаще всего вообще невозможно. К тому же эта величина расхода масла допускается производителем, а также соответствует норме исходя из общепринятой практики.

С другой стороны, как показывает несложный расчет, при отсутствии должного контроля над уровнем масла даже умеренно расходующего его двигателя (к примеру, 0,2 л на 1000 км, что в пять (!) раз ниже максимально допустимого производителем расхода) опасная ситуация со снижением уровня масла в двигателе могла возникнуть за 16800 км пробега как минимум дважды. Кроме того, многолетняя практика ремонта показывает, что чрезмерно низкий уровень масла не всегда может быть замечен водителем по внешним признакам. Если в конструкции двигателя применяются гидрокомпенсаторы в приводе клапанов, водитель может обратить внимание на повышенный шум и характерный стук гидрокомпенсаторов, особенно, на холодном двигателе при повышении частоты вращения, когда холодное масло, имеющее повышенную вязкость, не успевает стекать в поддон. В исследуемом двигателе применяется механическая регулировка зазоров, при которой повышенного шума при недостаточной подаче масла не возникает.

Обычно разница в количестве масла в двигателе, соответствующая меткам «МАХ» и на масломерном щупе, составляет около 1 л (наиболее часто наблюдается на практике для большинства двигателей многих производителей). При этом уменьшение уровня масла ниже отметки «M1N» недопустимо, поскольку на определенных режимах (движение на непрогретом двигателе с ускорением или замедлением) это может вызвать кратковременное падение давления масла в результате захватывания воздуха маслоприемником. При нехватке 2 л уровень масла становится чрезмерно низким и представляет реальную опасность для двигателя, поскольку режимы падения давления масла становятся затяжными и достаточными для повреждения деталей.

Если принять, что критический уровень масла соответствует нехватке 2 л, то за 16800 км расход масла до появления опасности повреждения двигателя составил бы 120 см3 масла на 1000 км пробега. Это чрезвычайно низкая величина расхода масла, полностью соответствующая нормальному состоянию нового двигателя.

Как это следует из приведенных выше данных, в двигателе на момент осмотра было около 700 см3 масла. Пробоина в поддоне картера (рис.) расположена достаточно высоко, и ее уровень по высоте соответствует как минимум 1,5-2 л масла в поддоне. Другими словами, если в двигателе на момент поломки было достаточно масла, его осталось бы около 1,5-2 л, поскольку остальное вытекло бы через пробоину.

С другой стороны, при быстром вытекании масла на движущемся автомобиле происходит разбрызгивание масла потоком воздуха и характерное замасливание днища автомобиля. Однако такое замасливание днища на исследуемом автомобиле отсутствует (рис.З, 7), за исключением некоторого количества масла на защите картера (рис.4).

Указанные данные свидетельствуют о том, что на момент поломки масла в двигателе было менее 1,5-2 л, а это уже является не только недопустимым количеством для нормальной эксплуатации, но и прямой причиной поломки. При сливе масла из двигателя его количество было определено — около 700 см3. Тогда с учетом замасленного участка на защите картера исходное количество масла в момент поломки на самом деле не превышало 1 л — фактически в двигателе не хватало 3,5 л масла, что не могло не привести к выходу его из строя.

Следовательно, за 16800 км пробега после очередного ТО общий расход масла составил приблизительно 3,5 л, что соответствует расходу 210 см3 на 1000 км. Данная величина расхода масла также является абсолютной нормой и к тому же в 5 раз меньше максимально допустимого расхода масла, разрешенного производителем автомобиля [2,3].

Непосредственно перед поломкой двигатель работал на чрезмерно низком давлении масла, что было следствием его чрезвычайно низкого уровня в поддоне картера. Этот факт подтверждается кодом неисправности Р3400, записанным в блоке управления. Данный код означает, что система отключения цилиндров, имеющаяся в конструкции данного двигателя, перешла в аварийный режим, поскольку давления масла было недостаточно для ее функционирования.

Отсутствие 3,5 л масла в двигателе, помимо его естественного расхода, в общем случае может быть вызвано и другими причинами. На практике известно немало случаев, когда масло вытекало через негерметичный сальник коленчатого вала, дефектную прокладку или пробитый поддон картера. Однако, как это видно на рис. 52, верхняя часть двигателя полностью сухая. Двигатель снизу автомобиля также полностью сухой (рис.3,6,7,8), за исключением следов вытекания масла из пробоин, образовавшихся в момент поломки. Кроме того, как указано выше, в случае вытекания масла оно всегда разносится потоком воздуха под днищем автомобиля, вызывая его замасливание на очень большой площади вплоть до задней панели кузова. Поскольку днище полностью сухое, это говорит о том, что течи масла не было, а малое количество масла в двигателе на момент поломки обусловлено только его естественным расходом в процессе эксплуатации.

Таким образом, есть все основания утверждать, что возникновение неисправности двигателя связано исключительно с несвоевременным контролем уровня масла в эксплуатации владельцем автомобиля.

Основные особенности повреждения коленчатого вала и вкладышей подшипников, характерные для данного случая, изложены выше. В дополнение к этому необходимо отметить, что согласно опыта эксплуатации и ремонта большого числа двигателей [1,7] при недостаточном уровне масла в поддоне картера двигателя повреждения получают в 1-ю очередь шатунные подшипники, как наиболее нагруженные узлы двигателя. Напротив, коренные подшипники, а также подшипники распределительного вала чаще получают повреждения, как правило, в случае чрезвычайно быстрого и полного или почти полного прекращения подачи масла (например, вследствие повреждения поддона картера и вытекания масла), в то время как шатунные подшипники в подобном случае практически не получают серьезных повреждений.

Как было установлено при осмотре деталей, дефект имел место только на 3-м шатунном подшипнике, в то время как другие шатунные подшипники не получили серьезных повреждений. Такой факт известен из практики [1] и может быть непосредственно связан с сочетанием допусков на изготовление коленчатого вала и сопряженных деталей.

Как известно, питание маслом каждой шатунной шейки осуществляется в двигателе от соседней коренной шейки. Очевидно, что при уменьшении подачи масла к коленчатому валу ухудшается охлаждение подшипников, в результате чего температура масла в них возрастает. При этом коренной подшипник, имеющий меньший рабочий зазор с шейкой вала, будет иметь худшие условия работы при недостаточной подаче масла, поскольку трение и температура масла в нем будут выше.

Аналогично шатунный подшипник с несколько меньшим, но в пределах заводского допуска, зазором будет иметь в таких нештатных условиях более высокую температуру, нежели подшипник с большим зазором. Как показывает практика, несмотря на жесткие допуски производства, зазоры в подшипниках коленчатого вала нередко имеют заметный разброс, поскольку величина зазора зависит от допусков на изготовление сразу 3-х деталей — вала, отверстия и вкладышей. В результате случайного сочетания допусков в один из шатунных подшипников от коренной шейки будет поступать масло с более высокой температурой, чем в другие шатунные подшипники. Этот процесс носит случайный характер, поскольку из практики известно немало случаев повреждения как крайних, так и средних подшипников, расположенных на разных расстояниях от маслонасоса [1].

Поскольку более горячее масло имеет пониженную вязкость, в этом подшипнике раньше других возникнут условия для непосредственного контакта трущихся деталей, прямо ведущие к их повреждению. Однако на других шатунных подшипниках также возможно появление следов непосредственного контакта вкладышей с валом, к примеру, в виде блестящих полос и участков, что имеет место и в рассматриваемом случае. Данный эффект наиболее характерен для работы двигателя под нагрузкой на средних и высоких оборотах при недостаточном уровне масла в картере [1,7].

Именно такая картина наблюдается в исследуемом двигателе. Фактически в этом случае речь идет о том, что владелец автомобиля допустил нарушение правил эксплуатации автомобиля, выразившееся в несвоевременном контроле уровня масла, в то время как производитель в Инструкции по эксплуатации и сервисной книжке [2,31 рекомендует регулярно, перед каждой поездкой, проверять уровень масла в двигателе.

Тот факт, что двигатель имел некоторый незначительный расход масла, возможно, от 0,1 до 0,2 л на 1000 км, подтверждается небольшим количеством рыхлого нагара от сгоревшего масла, который был обнаружен на поверхностях днища поршней (рис.20, 22). Однако установить причину такого малого расхода масла технически невозможно, и, кроме того, данная задача выходит за рамки настоящего исследования.

Еще одна возможная причина повреждения вкладышей в результате масляного голодания может быть связана с неблагоприятными погодными условиями, в частности, очень низкими температурами. В сочетании с маслом, имеющим повышенную вязкость при низкой температуре, запуск двигателя и быстрое начало движения без его прогрева могут вызвать повреждения вкладышей, аналогичные описанным выше.

Однако эксперт не считает такое предположение вероятным по причине отсутствия сильных морозов в течение времени эксплуатации автомобиля с момента выполнения очередного ТО. Кроме того, при техническом обслуживании в двигатель было налито синтетическое маловязкое масло с индексом вязкости 5W40, обеспечивающим надежную смазку деталей в условиях запуска при низких температурах. При этом конструкция двигателя полностью соответствует условиям круглогодичной эксплуатации в самом широком диапазоне температур. Указанные факторы позволяют сделать вывод о том, что низкие температуры окружающей среды не могут быть причиной серьезных повреждений исследуемого ДВС.

Таким образом:

Возникновение неисправности двигателя связано исключительно с несвоевременным контролем уровня масла в эксплуатации владельцем автомобиля. При этом владельцем было допущено нарушение требований Инструкции по эксплуатации автомобиля, выразившееся в несвоевременном контроле уровня масла, в то время как производитель в Инструкции по эксплуатации рекомендует регулярно, перед каждой поездкой, проверять уровень масла в двигателе. Предположения о заводском дефекте вкладышей и/или дефекте в системе смазки не соответствуют фактическим данным по характеру износа и повреждения деталей. Неисправность двигателя не имеет причинно-следственной связи с его производством и не может быть связана с каким-либо заводским дефектом.

Для ответа на 5-й вопрос:

Могла ли неисправность двигателя возникнуть вследствие применения моторного масла несоответствующего качества и/или его несвоевременной замены?

необходимо отметить следующее.

Согласно результатам исследования масла (рис.76), моторное масло в двигателе является старым, его остаточный ресурс отсутствует, что в целом является следствием его длительной (16800 км) работы после прохождения автомобилем очередного ТО. Действительно, при длительной работе моторного масла в двигателе оно испытывает воздействие многих неблагоприятных факторов, среди которых температурное воздействие от нагретых деталей, разжижение топливом, попадание конденсата воды из картерных газов и др. В результате происходит постепенное изменение характеристик масла — увеличение его вязкости за счет испарения легких фракций и химического преобразования их в более тяжелые, а также уменьшения содержания присадок (так называемое «срабатывание» присадок). Поэтому к концу срока службы масла, определяемого производителем автомобиля величиной межсервисного пробега автомобиля (15000 км для HONDA PILOT [2,3]), масло имеет несколько более высокую вязкость и плотность при пониженном содержании присадок. Это нормальный процесс, при котором масло еще сохраняет свои смазочные свойства, достаточные для нормальной работы двигателя.

При уменьшении количества масла в двигателе ниже предельно допустимого и наступлении режима масляного голодания температура масла значительно возрастает выше средних значений (100-120°С), поскольку масло испытывает сильное температурное воздействие от перегретых деталей двигателя. При этом воздействие температуры 600- 700°С, до которой были нагреты 3-я шатунная шейка коленчатого вала, нижняя головка 3- го шатуна и вкладыши, является для масла нештатным — при указанной температуре деталей моторное масло в двигателях не применяется. Такое воздействие оказывает неконтролируемое влияние на свойства масла и тем сильнее, чем меньше количество масла в двигателе, что будет сопровождаться не только быстрым нагревом и испарением из масла более легких фракций, но и еще более быстрым уменьшением количественного содержания в нем присадок, определяемого щелочным числом.

Такие нештатные условия работы неизбежно приводят к быстрому изменению и ухудшению всех основных свойств масла. Это подтверждается результатами химического анализа масла (рис.76), где вязкость масла заметно выше исходной, а щелочное число — ниже.

После разрушения поршня 4-го цилиндра коленчатый вал двигателя продолжал вращаться — по крайней мере, он сделал еще какое-то количество оборотов, прежде чем поршневой палец выпал из обломка 4-го шатуна и попал между противовесом коленчатого вала и стенкой блока цилиндров, вызвав заклинивание двигателя. Поскольку данное вращение сопровождалось подачей топлива форсунками, а поршень 4-го цилиндра был уже разрушен, это привело к поступлению бензина в масло через обломки 4-го поршня.

Этот факт подтверждается снижением параметра «температура вспышки» масла при попадании в него легких фракций бензина. При этом количество поступившего в масло бензина, имеющего малую вязкость и пониженную по сравнению с маслом плотность, было невелико, поскольку он не вызвал снижения вязкости и плотности масла. Это также свидетельствует о том, что после разрушения поршня двигатель проработал очень малое время — всего несколько секунд, в противном случае вязкость и плотность масла могли бы быть заметно снижены.

Помимо этого, обращает на себя внимание тот факт, что в масле не были найдены механические примеси. Как указано выше, в случае, если износ деталей (к примеру, при наличии заводского дефекта) имеет сравнительно медленный характер, в масле неизбежно появляются мелкие частицы — продукты износа деталей. Размер частиц зависит от многих факторов, но при наличии «медленного» износа масло должно содержать частицы малого размера — менее 40-50 мкм. Поскольку таких частиц не найдено, характер износа и разрушения деталей был сравнительно быстрым, с образованием преимущественно крупных частиц, которые задерживались не только масляным фильтром, но и, возможно, крупной сеткой маслоприемника. Это подтверждает описанную выше картину сравнительно быстрого разрушения вкладышей в режиме масляного голодания.

С другой стороны, для полноты картины необходимо рассмотреть случай, когда в результате ошибки при техническом обслуживании автомобиля масло было залито в количестве, меньшем необходимого. Тогда при строгом соблюдении Инструкции по эксплуатации владелец автомобиля обнаружил бы ошибку в обслуживании на следующий день, при пробеге не 16800 км, а как минимум в десятки раз меньшем. Поскольку двигатель с момента проведения ТО до поломки прошел 16800 км, а любая неисправность кривошипно-шатунного механизма (коленчатый вал, шатуны, вкладыши) приводит к поломке максимум за несколько сотен км пробега с момента ее возникновения [1], это означает, что, по меньшей мере, 16000 км с момента выполнения ТО двигатель работал нормально. Следовательно, исправление указанной ошибки в обслуживании состояло бы в простой проверке и доливке масла, а сама ошибка, если она и имела место, не вызвала бы для двигателя никаких последствий по причине ее заблаговременного исправления согласно требованиям Инструкции по эксплуатации.

В случае, если в двигатель при очередном техническом обслуживании было залито масло несоответствующего качества, возможные варианты развития событий были бы следующими:

  1. Образование на внутренних поверхностях стенок двигателя больших отложений со специальными свойствами — мазеобразных, рыхлых, с поступлением крупных частиц нагара в моторное масло (поддон картера). Особенно большой слой отложений был бы расположен на внутренних поверхностях крышек головок блока цилиндров [1].
  2. Закоксовывание поршневых колец в канавках поршней, в 1-ю очередь, маслосъемных [4,5,6].
  3. Большое количество нагара на днище поршней, боковой поверхности огневого пояса поршней, клапанах и камерах сгорания [4,5,6].
Однако нагарообразование на деталях двигателя не соответствует ни одному из перечисленных признаков низкого качества масла — нагар на деталях есть, но его количество не превышает известных из практики норм [1,4,5,6,8] и характеризует нормальную работу двигателя. Это косвенно свидетельствует о том, что в течение всего времени эксплуатации с момента прохождения ТО до момента поломки двигателя применялось моторное масло надлежащего качества.

Таким образом, свойства моторного масла, слитого из двигателя после возникновения неисправности, полностью соответствуют тем условиям, которые возникли в результате эксплуатации двигателя при недопустимо низком уровне масла. Поскольку процесс старения масла и срабатывания присадок был сильно ускорен и принял неконтролируемый характер вследствие значительного температурного воздействия от перегретых в режиме масляного голодания деталей, сравнение испытанных образцов масла и исходного сорта, залитого в двигатель при очередном техническом обслуживании, некорректно, и однозначно ответить на вопрос о том или ином «качестве» исследуемого масла не представляется возможным. Вместе с тем, косвенные признаки, в том числе, нормальное для двигателя количество нагара на деталях, свидетельствуют о том, что в течение всего времени эксплуатации с момента прохождения ТО до момента поломки двигателя применялось моторное масло надлежащего качества.

Следовательно, неисправность двигателя не имеет причинно-следственной связи с возможными ошибками при выполнении сервисных работ, в том числе, с заливкой недостаточного количества масла при его замене и/или с применением масла несоответствующего качества, в связи с длительной, в течение 16000 км пробега, нормальной работой двигателя после прохождения ТО и отсутствием сильного нагарообразования на внутренних деталях двигателя.

выводы

  1. Двигатель J35Z4 №1058345 автомобиля HONDA PILOT YF4, VIN: 5FNYF48409B40381, имеет серьезные неисправности и поломки.
  2. На поддоне картера пробоина диаметром около 15 мм в верхней части. Количество масла, слитого из двигателя, чрезвычайно мало — около 700 см . Блок цилиндров имеет 3 пробоины. Коленчатый вал деформирован и заклинен в результате попадания поршневого пальца 4-го поршня между щекой коленчатого вала и стенкой блока. 3-я шатунная шейка сильно перегрета и имеет характерный черный цвет, нижняя головка шатуна на шейке отсутствует, шатун 3-го цилиндра полностью разрушен, вкладыши 3-го цилиндра полностью разрушены и имеют следы сильного перегрева, плавления и деформации. Обломки нижней части 3-го шатуна сильно перегреты и пластически деформированы. Шатун 4-го цилиндра оборван по средней части стержня. Поршень 4-го цилиндра полностью разрушен, а поршень 3-го цилиндра деформирован. Клапаны 3-го и 4-го цилиндров также деформированы вследствие удара поршней. Остальные детали имеют незначительные дефекты или не имеют их вообще.
  3. Разрушение 3-го шатунного подшипника (нижняя головка шатуна, шатунная шейка и вкладыши), сопровождаемое сильным перегревом, потерей прочности и разрушением 3-го шатуна, является главной и единственной причиной поломки двигателя. Все прочие дефекты и поломки в двигателе, в том числе, разрушение 4-го шатуна и поршня, деформация клапанов, пробоины в стенках блока и поддона картера, являются вторичными и произошли как последствия первичного разрушения 3-го шатуна. Указанная причинно-следственная связь подтверждается многолетним опытом эксплуатации и ремонта большого числа двигателей.
  4. Исследованием установлено, что причиной неисправности двигателя было возникновение режима масляного голодания, при котором происходил непосредственный контакт трущихся деталей — шатунных вкладышей 3-го шатуна и шейки вала. В результате этого детали испытывали воздействие высоких температур, что привело к разрушению рабочего слоя вкладышей 3-го шатуна, перегреву шатунной шейки коленчатого вала и шатуна с последующим его разрушением. Обломки деталей при попадании в плоскость качания соседнего 4-го шатуна вызвали его поломку вместе с разрушением поршня, попадание фрагментов деталей между противовесами коленвала и стенками блока, что привело к появлению пробоин на блоке и поддоне картера, а также деформации клапанов 3 и 4-го цилиндров.
  5. За 16800 км пробега после очередного ТО общий расход масла в двигателе составил приблизительно 3,5 л, что соответствует расходу 210 см на 1000 км пробега. Данная величина расхода масла является абсолютной нормой и к тому же в 5 раз меньше максимально допустимого расхода масла, разрешенного производителем автомобиля.
  6. На момент поломки масла в двигателе было не более 1 л, что является не только недопустимым количеством для нормальной эксплуатации, но и прямой причиной поломки.
  7. Возникновение неисправности двигателя связано исключительно с несвоевременным контролем уровня масла в эксплуатации владельцем автомобиля. При этом владельцем было допущено нарушение требований Инструкции по эксплуатации автомобиля, выразившееся в несвоевременном контроле уровня масла, в то время как производитель в Инструкции по эксплуатации рекомендует регулярно, перед каждой поездкой, проверять уровень масла в двигателе.
  8. Факт несвоевременного контроля уровня масла и эксплуатации автомобиля с недопустимо низким уровнем масла подтверждается тем, что при появлении пробоин на блоке цилиндров и поддоне картера не произошло вытекания значительного количества масла, а блок управления записал в памяти код неисправности системы отключения цилиндров, свидетельствующий о работе двигателя с низким давлением масла.
  9. Предположения о заводском дефекте деталей цилиндропоршневой группы, вкладышей и системы смазки не соответствуют фактическим данным по характеру износа и повреждения деталей. Таким образом, неисправность двигателя не имеет причинно-следственной связи с его производством и не может быть связана с каким-либо заводским дефектом.
  10. Свойства моторного масла, слитого из двигателя после возникновения неисправности, полностью соответствуют тем условиям, которые возникли в результате эксплуатации двигателя при недопустимо низком уровне масла. Поскольку процесс старения масла и срабатывания присадок был сильно ускорен и принял неконтролируемый характер вследствие значительного температурного воздействия от перегретых в режиме масляного голодания деталей, сравнение испытанных образцов масла и исходного сорта, залитого в двигатель при очередном техническом обслуживании, некорректно, и однозначно ответить на вопрос о том или ином «качестве» исследуемого масла не представляется возможным. Вместе с тем, косвенные признаки, в том числе, нормальное для двигателя количество нагара на деталях, свидетельствуют о том, что в течение всего времени эксплуатации с момента прохождения ТО до поломки двигателя применялось моторное масло надлежащего качества.
  11. Неисправность двигателя не имеет причинно-следственной связи с возможными ошибками при выполнении сервисных работ, в том числе, с заливкой недостаточного количества масла при его замене и/или с применением масла несоответствующего качества, в связи с длительной, в течение 16000 км пробега, нормальной работой двигателя после прохождения ТО и отсутствием сильного нагарообразования на внутренних деталях двигателя.
  12. Прочие причины, такие как влияние на работу двигателя и его системы смазки низких температур, не являются, по мнению эксперта, вероятными и заслуживающими внимания.

Эксперт-автотехник 1-й категории, кандидат технических наук, Ген.директор ООО «СМЦ «АБ-Инжиниринг» А.Э.Хрулев

Александр Хрулев, канд. техн. наук, директор фирмы «АБ-Инжиниринг»

Мгновенный анализ последствий вождения без усилителя руля

.bs-pinning-wrapper> .bs-pinning-block, body.page-layout-1-col .boxed.site-header.header-style-6 .content-wrap> .bs-pinning-wrapper> .bs- блок закрепления, body.page-layout-1-col .boxed.site-header.header-style-8 .content-wrap> .bs-pinning-wrapper> .bs-pinning-block, body.page-layout- 1-col.boxed .main-wrap, .page-layout-2-col-right .container, .page-layout-2-col-right .content-wrap, body.page-layout-2-col-right. в штучной упаковке.main-wrap, .page-layout-2-col-left .container, .page-layout-2-col-left .content-wrap, body.page-layout-2-col-left.boxed .main-wrap, .page-layout-1-col .bs-vc-content> .vc_row, .page-layout-1-col .bs-vc-content> .vc_vc_row, .page-layout-1-col .bs-vc-content .vc_row [data-vc-full-width = true]>. bs-vc-wrapper, .footer-instagram.boxed, .site-footer.boxed, .page-layout-1-col .bs-vc-content> .vc_row.vc_row-has-fill .upb-background-text.vc_row {max-width: 1180px} @media (min-width: 768px) {. layout-2-col .content-column {width: 67%}} @media (минимальная ширина: 768 пикселей) {.layout-2-col .sidebar-column {width: 33%}} @ media (min-width: 768px) {. layout-2-col.layout-2-col-2 .content-column {left: 33%} } @media (min-width: 768px) {. rtl .layout-2-col.layout-2-col-2 .content-column {left: inherit; right: 33%}} @ media (min-width: 768px ) {. layout-2-col.layout-2-col-2 .sidebar-column {right: 67%}} @ media (min-width: 768px) {. rtl .layout-2-col.layout-2- col-2 .sidebar-column {right: inherit; left: 67%}} @ media (max-width: 1270px) {. page-layout-1-col .bs-sks .bs-sksitem, .page-layout- 2-col-right .bs-sks .bs-sksitem ,.page-layout-2-col-left .bs-sks .bs-sksitem {display: none! important}}. page-layout-3-col-0 .container, .page-layout-3-col-0 .content -wrap, body.page-layout-3-col-0.boxed .main-wrap, .page-layout-3-col-1 .container, .page-layout-3-col-1 .content-wrap, body .page-layout-3-col-1.boxed .main-wrap, .page-layout-3-col-2 .container, .page-layout-3-col-2 .content-wrap, body.page-layout -3-col-2.boxed .main-wrap, .page-layout-3-col-3 .container, .page-layout-3-col-3 .content-wrap, body.page-layout-3-col -3.в коробке. Основная упаковка ,.page-layout-3-col-4 .container, .page-layout-3-col-4 .content-wrap, body.page-layout-3-col-4.boxed .main-wrap, .page-layout- 3-col-5 .container, .page-layout-3-col-5 .content-wrap, body.page-layout-3-col-5.boxed .main-wrap, .page-layout-3-col- 6.container, .page-layout-3-col-6 .content-wrap, body.page-layout-3-col-6.boxed .main-wrap, body.boxed.page-layout-3-col .site -header.header-style-5 .content-wrap> .bs-pinning-wrapper> .bs-pinning-block, body.boxed.page-layout-3-col .site-header.header-style-6 .content -wrap>.bs-pinning-wrapper> .bs-pinning-block, body.boxed.page-layout-3-col .site-header.header-style-8 .content-wrap> .bs-pinning-wrapper> .bs-pinning -block, .layout-3-col-0 .bs-vc-content> .vc_row, .layout-3-col-0 .bs-vc-content> .vc_vc_row, .layout-3-col-0 .bs- vc-content .vc_row [data-vc-full-width = true]>. bs-vc-wrapper, .layout-3-col-0 .bs-vc-content> .vc_row.vc_row-has-fill .upb- background-text.vc_row {max-width: 1300px} @media (min-width: 1000px) {. layout-3-col .content-column {width: 58%}} @ media (min-width: 1000px) {. макет-3-цв.sidebar-column-primary {width: 25%}} @ media (min-width: 1000px) {. layout-3-col .sidebar-column-secondary {width: 17%}} @ media (max-width: 1000px) и (min-width: 768px) {. layout-3-col .content-column {width: 67%}} @ media (max-width: 1000px) и (min-width: 768px) {. layout-3-col .sidebar-column-primary {width: 33%}} @ media (max-width: 768px) и (min-width: 500px) {. layout-3-col .sidebar-column-primary {width: 54%}} @media (максимальная ширина: 1390 пикселей) {. page-layout-3-col-0 .bs-sks .bs-sksitem, .page-layout-3-col-1 .bs-sks .bs-sksitem, .page -layout-3-col-2.bs-sks .bs-sksitem, .page-layout-3-col-3 .bs-sks .bs-sksitem, .page-layout-3-col-4 .bs-sks .bs-sksitem, .page-layout -3-col-5 .bs-sks .bs-sksitem, .page-layout-3-col-6 .bs-sks .bs-sksitem {display: none! Important}} @ media (min-width: 1000px) {.layout-3-col-2 .sidebar-column-primary {left: 17%}} @ media (min-width: 1000px) {. rtl .layout-3-col-2 .sidebar-column-primary {left : inherit; right: 17%}} @ media (min-width: 1000px) {. layout-3-col-2 .sidebar-column-secondary {right: 25%}} @ media (min-width: 1000px) { .rtl .layout-3-col-2.sidebar-column-secondary {right: inherit; left: 25%}} @ media (min-width: 1000px) {. layout-3-col-3 .content-column {left: 25%}} @ media (min- width: 1000px) {. rtl .layout-3-col-3 .content-column {left: inherit; right: 25%}} @ media (min-width: 1000px) {. layout-3-col-3 .sidebar -column-primary {right: 58%}} @ media (min-width: 1000px) {. rtl .layout-3-col-3 .sidebar-column-primary {right: inherit; left: 58%}} @ media (min-width: 1000px) {. layout-3-col-4 .content-column {left: 17%}} @ media (min-width: 1000px) {. rtl .layout-3-col-4 .content- столбец {слева: наследовать; справа: 17%}} @ media (min-width: 1000px) {.layout-3-col-4 .sidebar-column-primary {left: 17%}} @ media (min-width: 1000px) {. rtl .layout-3-col-4 .sidebar-column-primary {left: наследовать ; right: 17%}} @ media (min-width: 1000px) {. layout-3-col-4 .sidebar-column-secondary {right: 83%}} @ media (min-width: 1000px) {. rtl .layout-3-col-4 .sidebar-column-secondary {right: inherit; left: 83%}} @ media (min-width: 1000px) {. layout-3-col-5 .content-column {left: 42%}} @ media (min-width: 1000px) {. Rtl .layout-3-col-5 .content-column {left: inherit; right: 42%}} @ media (min-width: 1000px) {. макет-3-col-5.sidebar-column-primary {right: 58%}} @ media (min-width: 1000px) {. rtl .layout-3-col-5 .sidebar-column-primary {right: inherit; left: 58%}} @ media (min-width: 1000px) {. layout-3-col-5 .sidebar-column-secondary {right: 58%}} @ media (min-width: 1000px) {. rtl .layout-3-col-5 .sidebar-column-secondary {right: inherit; left: 58%}} @ media (min-width: 1000px) {. layout-3-col-6 .content-column {left: 42%}} @ media (min -width: 1000px) {. rtl .layout-3-col-6 .content-column {left: inherit; right: 42%}} @ media (min-width: 1000px) {. layout-3-col-6. sidebar-column-primary {right: 41%}} @ media (min-width: 1000 пикселей) {.rtl .layout-3-col-6 .sidebar-column-primary {right: inherit; left: 41%}} @ media (min-width: 1000px) {. layout-3-col-6 .sidebar-column-secondary {right: 83%}} @ media (min-width: 1000px) {. rtl .layout-3-col-6 .sidebar-column-secondary {right: inherit; left: 83%}} @ media (max-width : 1000px) и (min-width: 768px) {. Layout-3-col-3 .content-column, .layout-3-col-5 .content-column, .layout-3-col-6 .content-column {left: 33%}} @ media (max-width: 1000px) и (min-width: 768px) {. rtl .layout-3-col-3 .content-column, .rtl .layout-3-col-5 .content-column ,.rtl .layout-3-col-6 .content-column {left: inherit; right: 33%}} @ media (max-width: 1000px) и (min-width: 768px) {. layout-3-col-3 .sidebar-column-primary, .layout-3-col-5 .sidebar-column-primary, .layout-3-col-6 .sidebar-column-primary {right: 67%}} @ media (max-width: 1000px) и (min-width: 768px) {. Rtl .layout-3-col-3 .sidebar-column-primary, .rtl .layout-3-col-5 .sidebar-column-primary, .rtl .layout- 3-col-6 .sidebar-column-primary {справа: наследование; слева: 67%}}. Col-xs-1, .col-sm-1, .col-md-1, .col-lg-1, .col-xs-2, .col-sm-2,.col-md-2, .col-lg-2, .col-xs-3, .col-sm-3, .col-md-3, .col-lg-3, .col-xs-4, .col -sm-4, .col-md-4, .col-lg-4, .col-XS-5, .col-sm-5, .col-md-5, .col-lg-5, .col- XS-6, .col-sm-6, .col-md-6, .col-lg-6, .col-XS-7, .col-sm-7, .col-md-7, .col-lg -7, .col-xs-8, .col-sm-8, .col-md-8, .col-lg-8, .col-XS-9, .col-sm-9, .col-md- 9, .col-lg-9, .col-xs-10, .col-sm-10, .col-md-10, .col-lg-10, .col-xs-11, .col-sm-11 , .col-md-11, .col-lg-11, .col-xs-12, .col-sm-12, .col-md-12, .col-lg-12, .vc_row .vc_column_container> .vc_column -иннер, .container, .vc_column_container.vc_column_container {padding-left: 24px; padding-right: 24px} .vc_row.wpb_row, .row, .bs-vc-content .vc_row.vc_row-no-padding [data-vc-stretch-content = «true»] { margin-left: -24px; margin-right: -24px} .vc_row.vc_inner {margin-left: -24px! important; margin-right: -24px! important} .widget, .entry-content .better-studio-shortcode , .better-studio-shortcode, .bs-shortcode, .bs-list, .bsac, .content-column> div: last-child, .slider-style-18-container, .slider-style-16-container, .slider-style-8-container, .slider-style-2-container,.4-контейнер в стиле слайдера, .bsp-wrapper, .single-container, .content-column> div: last-child, .vc_row .vc_column-inner .wpb_content_element, .wc-account-content-wrap, .order- сведения о клиенте, .order-detail-wrap {margin-bottom: 48px} .archive-title {margin-bottom: 32px} .layout-1-col, .layout-2-col, .layout-3-col {margin -top: 35px} .layout-1-col.layout-bc-before, .layout-2-col.layout-bc-before, .layout-3-col.layout-bc-before {margin-top: 24px} .bs-vc-content> .vc_row.vc_row-fluid.vc_row-has-fill: first-child, .bs -isting.bs -isting-products.bs-slider-controls, .bs -isting.bs -isting-products .bs-pagination {margin-top: -35px! important} .vc_col-has-fill> .bs-vc-wrapper, .vc_row-has-fill + .vc_row-full-width + .vc_row> .bs-vc-wrapper> .wrapper-sticky> .bs-vc-column> .bs-vc-wrapper, .vc_row-has-fill + .vc_row-full-width + .vc_row> .bs-vc-wrapper> .bs-vc-column> .bs-vc-wrapper, .vc_row-has-fill + .vc_row> .bs-vc-wrapper> .bs-vc-column> .bs-vc-wrapper , .vc_row-has-fill + .vc_row> .bs-vc-wrapper> .wrapper-sticky> .bs-vc-column> .bs-vc-wrapper, .vc_row-has-fill + .vc_row> .wpb_column>.bs-vc-wrapper, .vc_row-has-fill> .bs-vc-wrapper> .vc_column_container> .bs-vc-wrapper, .vc_row-has-fill> .wpb_column> .bs-vc-wrapper {padding-top : 40px! Important} .vc_row-has-fill .wpb_wrapper> .bsp-wrapper: last-child, .vc_col-has-fill .wpb_wrapper> .bsp-wrapper: last-child, .vc_row-has-fill .wpb_wrapper> .bs-листинг: последний-дочерний, .vc_col-has-fill .wpb_wrapper> .bs-листинг: последний-дочерний, .main-section, # bbpress-forum # bbp-search-form, .vc_row-has-fill. wpb_wrapper> .bsac: last-child, .vc_col-has-fill .wpb_wrapper> .bsac: last-child ,.vc_row-has-fill .wpb_wrapper> .bs-shortcode: last-child, .vc_col-has-fill .wpb_wrapper> .bs-shortcode: last-child, .vc_row-has-fill .wpb_wrapper> .better-studio-shortcode : last-child, .vc_col-has-fill .wpb_wrapper> .better-studio-shortcode: last-child {margin-bottom: 40px} .bs -isting-modern-grid -isting-3.bs -isting {margin- bottom: 24px! important} .vc_row-has-fill .wpb_wrapper> .bs -isting-modern-grid -isting-3.bs -isting: last-child {margin-bottom: 20px! important} .single-container>. пост-автор, .post, .post +.шаблон-комментариев, .post-related + .single-container, .post-related + .ajax-post-content, .comments-template, .comment-response.comments-template, .bsac.adloc-post-before-author,. woocommerce-page div.product .woocommerce-tabs, .woocommerce-page div.product .related.products, .woocommerce .cart-collaterals .cart_totals, .woocommerce .cart-collaterals .cross-sells, .woocommerce-checkout-review- order-wrap, .woocommerce + .woocommerce, .woocommerce + .bs-shortcode, .up-sells.products,. single-container> .bs-newsletter-pack, body.один .content-column> .bs-newsletter-pack {margin-top: 48px} .better-gcs-wrapper {margin-top: -48px} .slider-style-21-container, .slider-style-20-container , .slider-style-19-container, .slider-style-17-container, .slider-style-15-container, .slider-style-13-container, .slider-style-11-container, .slider-style -9-контейнер, .slider-style-7-container, .slider-style-4-container.slider-container-1col, .slider-style-3-container, .slider-style-5-container, .slider- style-2-container.slider-container-1col, .slider-style-1-container ,.slider-container + .bs-sks {padding-top: 40px; padding-bottom: 48px; margin-bottom: -40px} .slider-style-21-containe]]>

Каковы последствия эксплуатации автомобиля без термостата ?

.bs-pinning-wrapper> .bs-pinning-block, body.page-layout-1-col .boxed.site-header.header-style-6 .content-wrap> .bs-pinning-wrapper> .bs- блок закрепления, body.page-layout-1-col .boxed.site-header.header-style-8 .content-wrap> .bs-pinning-wrapper> .bs-pinning-block, body.page-layout- 1-col. В коробке .main-wrap, .page-layout-2-col-right.контейнер, .page-layout-2-col-right .content-wrap, body.page-layout-2-col-right.boxed .main-wrap, .page-layout-2-col-left .container, .page -layout-2-col-left .content-wrap, body.page-layout-2-col-left.boxed .main-wrap, .page-layout-1-col .bs-vc-content> .vc_row ,. page-layout-1-col .bs-vc-content> .vc_vc_row, .page-layout-1-col .bs-vc-content .vc_row [data-vc-full-width = true]>. bs-vc- оболочка, .footer-instagram.boxed, .site-footer.boxed, .page-layout-1-col .bs-vc-content> .vc_row.vc_row-has-fill .upb-background-text.vc_row {max-width: 1180px} @media (min-width: 768px) {. layout-2-col .content-column {width: 67%}} @ media (min-width: 768px) {. layout-2- col .sidebar-column {width: 33%}} @ media (min-width: 768px) {. layout-2-col.layout-2-col-2 .content-column {left: 33%}} @ media ( min-width: 768px) {. rtl .layout-2-col.layout-2-col-2 .content-column {left: inherit; right: 33%}} @ media (min-width: 768px) {. layout -2-col.layout-2-col-2 .sidebar-column {right: 67%}} @ media (min-width: 768px) {. Rtl .layout-2-col.layout-2-col-2. столбец боковой панели {справа: наследование; слева: 67%}} @ media (max-width: 1270px) {.page-layout-1-col .bs-sks .bs-sksitem, .page-layout-2-col-right .bs-sks .bs-sksitem, .page-layout-2-col-left .bs-sks. bs-sksitem {display: none! important}}. page-layout-3-col-0 .container, .page-layout-3-col-0 .content-wrap, body.page-layout-3-col-0 .boxed .main-wrap, .page-layout-3-col-1 .container, .page-layout-3-col-1 .content-wrap, body.page-layout-3-col-1.boxed .main -wrap, .page-layout-3-col-2 .container, .page-layout-3-col-2 .content-wrap, body.page-layout-3-col-2.boxed .main-wrap ,. макет страницы-3-col-3.контейнер, .page-layout-3-col-3 .content-wrap, body.page-layout-3-col-3.boxed .main-wrap, .page-layout-3-col-4 .container, .page -layout-3-col-4 .content-wrap, body.page-layout-3-col-4.boxed .main-wrap, .page-layout-3-col-5 .container, .page-layout-3 -col-5 .content-wrap, body.page-layout-3-col-5.boxed .main-wrap, .page-layout-3-col-6 .container, .page-layout-3-col-6 .content-wrap, body.page-layout-3-col-6.boxed .main-wrap, body.boxed.page-layout-3-col .site-header.header-style-5 .content-wrap>. bs-pinning-wrapper>.bs-pinning-block, body.boxed.page-layout-3-col .site-header.header-style-6 .content-wrap> .bs-pinning-wrapper> .bs-pinning-block, body.boxed. page-layout-3-col .site-header.header-style-8 .content-wrap> .bs-pinning-wrapper> .bs-pinning-block, .layout-3-col-0 .bs-vc-content > .vc_row, .layout-3-col-0 .bs-vc-content> .vc_vc_row, .layout-3-col-0 .bs-vc-content .vc_row [data-vc-full-width = true]> .bs-vc-wrapper, .layout-3-col-0 .bs-vc-content> .vc_row.vc_row-has-fill .upb-background-text.vc_row {max-width: 1300px} @media (min- width: 1000px) {.layout-3-col .content-column {width: 58%}} @ media (min-width: 1000px) {. layout-3-col .sidebar-column-primary {width: 25%}} @ media (min- width: 1000px) {. layout-3-col .sidebar-column-secondary {width: 17%}} @ media (max-width: 1000px) и (min-width: 768px) {. layout-3-col .content -column {width: 67%}} @ media (max-width: 1000px) и (min-width: 768px) {. layout-3-col .sidebar-column-primary {width: 33%}} @ media (max -width: 768px) и (min-width: 500px) {. layout-3-col .sidebar-column-primary {width: 54%}} @ media (max-width: 1390px) {. page-layout-3- col-0.bs-sks .bs-sksitem, .page-layout-3-col-1 .bs-sks .bs-sksitem, .page-layout-3-col-2 .bs-sks .bs-sksitem, .page-layout -3-col-3 .bs-sks .bs-sksitem, .page-layout-3-col-4 .bs-sks .bs-sksitem, .page-layout-3-col-5 .bs-sks .bs -sksitem, .page-layout-3-col-6 .bs-sks .bs-sksitem {display: none! important}} @ media (min-width: 1000px) {. layout-3-col-2 .sidebar- column-primary {left: 17%}} @ media (min-width: 1000px) {. rtl .layout-3-col-2 .sidebar-column-primary {left: inherit; right: 17%}} @ media ( минимальная ширина: 1000 пикселей) {. layout-3-col-2.sidebar-column-secondary {right: 25%}} @ media (min-width: 1000px) {. rtl .layout-3-col-2 .sidebar-column-secondary {right: inherit; left: 25%}} @ media (min-width: 1000px) {. layout-3-col-3 .content-column {left: 25%}} @ media (min-width: 1000px) {. rtl .layout-3-col-3 .content -column {left: inherit; right: 25%}} @ media (min-width: 1000px) {. layout-3-col-3 .sidebar-column-primary {right: 58%}} @ media (min-width : 1000px) {. Rtl .layout-3-col-3 .sidebar-column-primary {right: inherit; left: 58%}} @ media (min-width: 1000px) {. Layout-3-col-4. content-column {left: 17%}} @ media (min-width: 1000 пикселей) {.rtl .layout-3-col-4 .content-column {left: inherit; right: 17%}} @ media (min-width: 1000px) {. layout-3-col-4 .sidebar-column-primary {left : 17%}} @ media (min-width: 1000px) {. Rtl .layout-3-col-4 .sidebar-column-primary {left: inherit; right: 17%}} @ media (min-width: 1000px ) {. layout-3-col-4 .sidebar-column-secondary {right: 83%}} @ media (min-width: 1000px) {. rtl .layout-3-col-4 .sidebar-column-secondary { справа: наследование; слева: 83%}} @ media (min-width: 1000px) {. layout-3-col-5 .content-column {left: 42%}} @ media (min-width: 1000px) {. rtl.layout-3-col-5 .content-column {left: inherit; right: 42%}} @ media (min-width: 1000px) {. layout-3-col-5 .sidebar-column-primary {right: 58 %}} @ media (min-width: 1000px) {. rtl .layout-3-col-5 .sidebar-column-primary {right: inherit; left: 58%}} @ media (min-width: 1000px) { .layout-3-col-5 .sidebar-column-secondary {right: 58%}} @ media (min-width: 1000px) {. rtl .layout-3-col-5 .sidebar-column-secondary {right: наследовать; left: 58%}} @ media (min-width: 1000px) {. layout-3-col-6 .content-column {left: 42%}} @ media (min-width: 1000px) {. rtl. макет-3-col-6.content-column {left: inherit; right: 42%}} @ media (min-width: 1000px) {. layout-3-col-6 .sidebar-column-primary {right: 41%}} @ media (min- width: 1000px) {. rtl .layout-3-col-6 .sidebar-column-primary {right: inherit; left: 41%}} @ media (min-width: 1000px) {. layout-3-col-6 .sidebar-column-secondary {right: 83%}} @ media (min-width: 1000px) {. rtl .layout-3-col-6 .sidebar-column-secondary {right: inherit; left: 83%}} @media (max-width: 1000px) и (min-width: 768px) {. layout-3-col-3 .content-column, .layout-3-col-5 .content-column, .layout-3-col -6.content-column {left: 33%}} @ media (max-width: 1000px) и (min-width: 768px) {. rtl .layout-3-col-3 .content-column, .rtl .layout-3- col-5 .content-column, .rtl .layout-3-col-6 .content-column {left: inherit; right: 33%}} @ media (max-width: 1000px) и (min-width: 768px) {.layout-3-col-3 .sidebar-column-primary, .layout-3-col-5 .sidebar-column-primary, .layout-3-col-6 .sidebar-column-primary {right: 67% }} @ media (max-width: 1000px) и (min-width: 768px) {. rtl .layout-3-col-3 .sidebar-column-primary, .rtl .layout-3-col-5 .sidebar- столбец первичный ,.rtl .layout-3-col-6 .sidebar-column-primary {справа: наследование; слева: 67%}}. col-xs-1, .col-sm-1, .col-md-1, .col- LG-1, .col-XS-2, .col-sm-2, .col-md-2, .col-lg-2, .col-XS-3, .col-sm-3, .col-md -3, .col-lg-3, .col-XS-4, .col-sm-4, .col-md-4, .col-lg-4, .col-xs-5, .col-sm- 5, .col-md-5, .col-lg-5, .col-xs-6, .col-sm-6, .col-md-6, .col-lg-6, .col-xs-7 , .col-sm-7, .col-md-7, .col-lg-7, .col-xs-8, .col-sm-8, .col-md-8, .col-lg-8, .col-xs-9, .col-sm-9, .col-md-9, .col-lg-9, .col-xs-10, .col-sm-10, .col-md-10,. col-lg-10, .col-xs-11, .col-sm-11, .col-md-11,.col-lg-11, .col-XS-12, .col-sm-12, .col-md-12, .col-lg-12, .vc_row, .vc_column_container> .vc_column-inner, .container, .vc_column_container. vc_column_container {padding-left: 24px; padding-right: 24px} .vc_row.wpb_row, .row, .bs-vc-content .vc_row.vc_row-no-padding [data-vc-stretch-content = «true»] { margin-left: -24px; margin-right: -24px} .vc_row.vc_inner {margin-left: -24px! important; margin-right: -24px! important} .widget, .entry-content .better-studio-shortcode , .better-studio-shortcode, .bs-shortcode, .bs -isting, .bsac, .content-column> div: last-child ,.slider-style-18-container, .slider-style-16-container, .slider-style-8-container, .slider-style-2-container, .slider-style-4-container, .bsp-wrapper ,. одиночный контейнер, .content-column> div: last-child, .vc_row .vc_column-inner .wpb_content_element, .wc-account-content-wrap, .order-customer-detail, .order-detail-wrap {margin-bottom : 48px} .archive-title {margin-bottom: 32px} .layout-1-col, .layout-2-col, .layout-3-col {margin-top: 35px} .layout-1-col.layout- bc-before, .layout-2-col.layout-bc-before, .layout-3-col.layout-bc-before {margin-top: 24px}.bs-vc-content> .vc_row.vc_row-fluid.vc_row-has-fill: first-child, .bs -isting.bs -isting-products .bs-slider-controls, .bs -isting.bs -isting-products .bs-pagination {margin-top: -35px! important} .vc_col-has-fill> .bs-vc-wrapper, .vc_row-has-fill + .vc_row-full-width + .vc_row> .bs-vc-wrapper> .wrapper-sticky> .bs-vc-column> .bs-vc-wrapper, .vc_row-has-fill + .vc_row-full-width + .vc_row> .bs-vc-wrapper> .bs-vc-column> .bs -vc-wrapper, .vc_row-has-fill + .vc_row> .bs-vc-wrapper> .bs-vc-column> .bs-vc-wrapper, .vc_row-has-fill + .vc_row>.bs-vc-wrapper> .wrapper-sticky> .bs-vc-column> .bs-vc-wrapper, .vc_row-has-fill + .vc_row> .wpb_column> .bs-vc-wrapper, .vc_row-has-fill > .bs-vc-wrapper> .vc_column_container> .bs-vc-wrapper, .vc_row-has-fill> .wpb_column> .bs-vc-wrapper {padding-top: 40px! important} .vc_row-has-fill. wpb_wrapper> .bsp-wrapper: last-child, .vc_col-has-fill .wpb_wrapper> .bsp-wrapper: last-child, .vc_row-has-fill .wpb_wrapper> .bs -isting: last-child, .vc_col- has-fill .wpb_wrapper> .bs -isting: last-child, .main-section, # bbpress-forum # bbp-search-form ,.vc_row-has-fill .wpb_wrapper> .bsac: last-child, .vc_col-has-fill .wpb_wrapper> .bsac: last-child, .vc_row-has-fill .wpb_wrapper> .bs-shortcode: last-child ,. vc_col-has-fill .wpb_wrapper> .bs-shortcode: last-child, .vc_row-has-fill .wpb_wrapper> .better-studio-shortcode: last-child, .vc_col-has-fill .wpb_wrapper> .better-studio -shortcode: last-child {margin-bottom: 40px} .bs-листинг-листинг-современная-сетка-листинг-3.bs-листинг {margin-bottom: 24px! important} .vc_row-has-fill .wpb_wrapper> .bs- листинг-современная-сетка-листинг-3.bs-листинг: последний-ребенок {маржа-дно: 20px! важно}.single-container> .post-author, .post-related, .post-related + .comments-template, .post-related + .single-container, .post-related + .ajax-post-content, .comments-template, .comment -respond.comments-template, .bsac.adloc-post-before-author, .woocommerce-page div.product .woocommerce-tabs, .woocommerce-page div.product .related.products, .woocommerce .cart-collaterals .cart_totals , .woocommerce .cart-collaterals .cross-sells, .woocommerce-checkout-review-order-wrap, .woocommerce + .woocommerce, .woocommerce + .bs-shortcode,.up-sells.products, .single-container> .bs-newsletter-pack, body.single .content-column> .bs-newsletter-pack {margin-top: 48px} .better-gcs-wrapper {margin-top: -48px} .slider-style-21-container, .slider-style-20-container, .slider-style-19-container, .slider-style-17-container, .slider-style-15-container, .slider. -style-13-container, .slider-style-11-container, .slider-style-9-container, .slider-style-7-container, .slider-style-4-container.slider-container-1col ,. slider-style-3-container, .slider-style-5-container, .slider-style-2-container.slider-container-1col, .slider-style-1-container, .slider-container + .bs-sks {padding-top: 40px; padding-bottom: 48px; margin-bottom: -40px} .slider-style-21- container.slider-bc-before, .slider-style-20-container.slider-bc-before, .slider-style-19-container.slider-bc-before, .slider-style-17-container.slider-bc -before, .slider-style-15-container.slider-bc-before, .slider-style-13-container.slider-bc-before, .slider-style-11-container.slider-bc-before, .slider -style-9-container.slider-bc-before, .slider-style-7-container.slider-bc-before, .slider-style-3-container.slider-bc-before, .slider-style-5-container.slider-bc-before, .slider-style-1-container.slider-bc-before , .slider-container.slider-bc-before + .bs-sks {padding-top: 24px; padding-bottom: 24px; margin-bottom: 24px} .section-heading {margin-bottom: 28px} экран только @media и (max-width: 678px) {. footer-widgets> .content-wrap> .container> .row> * {margin-bottom: 40px}}. main-bg-color, .btn, html input [type = «button «], input [type =» reset «], input [type =» submit «], input [type =» button «] ,. btn: focus ,.btn: hover, button: focus, button: hover, html input [type = «button»]: focus, html input [type = «button»]: hover, input [type = «reset»]: фокус, input [тип = «сброс»]: наведение, ввод [type = «submit»]: фокус, ввод [type = «submit»]: наведение, ввод [type = «button»]: фокус, ввод [type = «button»]: hover, .main-menu.menu .sub-menu li.current-menu-item: hover> a: hover, .main-menu.menu .better-custom-badge, .off-canvas-menu .menu .better- пользовательский-значок, ul.sub-menu.bs-pretty-tabs-elements .mega-menu.mega-type-link .mega-links> li: hover> a, .widget.widget_nav_menu.menu .better-custom-badge, .widget.widget_nav_menu ul.menu li> a: hover, .widget.widget_nav_menu ul.menu li.current-menu-item> a, .rh-header .menu-container .resp-menu .better-custom-badge, .bs-Popular-Categories .bs-popular-term-item: hover .term-count, .widget.widget_tag_cloud .tagcloud a: hover, span.dropcap.dropcap-square, span.dropcap. dropcap-circle, .better-control-nav li a.better-active, .better-control-nav li: hover a, .main-menu.menu> li: hover> a: before, .main-menu.menu> li.current-menu-parent> a: до, .main-menu.menu> li.current-menu-item> a: before, .main-slider .better-control-nav li a.better-active, .main-slider .better-control-nav li: hover a, .site-footer .color-scheme-dark .footer-widgets .widget.widget_tag_cloud .tagcloud a: hover, .site-footer.color-scheme-dark .footer-widgets .widget.widget_nav_menu ul.menu li a: hover, .entry-terms .via a: hover, .entry-terms.source a: hover, .entry-terms.post-tags a: hover, .comment-response # cancel-comment-reply-link, .better-newsticker .heading, .better. -newsticker .control-nav span: hover ,.list-item-text-1: hover .term-badges.floated .term-badge a, .ter]]>

Энергоснабжение, мир

Энергоснабжение, мир, совокупные ресурсы, с помощью которых страны мира попытаться удовлетворить свои потребности в энергии. Энергия — основа индустриальной цивилизации; без энергии современная жизнь перестала бы существовать. В 1970-е годы мир начал болезненную адаптацию к уязвимости энергоснабжения. В долгосрочной перспективе сохранение энергоресурсов может предоставить время, необходимое для разработки новых источников энергии, таких как водородные топливные элементы, или для дальнейшего развития альтернативных источников энергии, таких как солнечная энергия и энергия ветра.Однако пока такое развитие событий происходит, мир будет по-прежнему уязвим для перебоев с поставками нефти, которая после Второй мировой войны (1939-1945 гг.) Стала наиболее популярным источником энергии.

II ИСТОРИЯ СОВРЕМЕННОЙ СИТУАЦИИ

Древесина была первым и на протяжении большей части истории человечества основным источником энергии. Он был легко доступен, потому что во многих частях мира росли обширные леса, а количество дров, необходимых для отопления и приготовления пищи, было относительно скромным.Некоторые другие источники энергии, найденные только в определенных местах, также использовались в древние времена: асфальт, уголь и торф из поверхностных отложений и нефть из просачиваемых подземных отложений.

Ситуация изменилась, когда в средние века начали использовать древесину для производства древесного угля. Древесный уголь нагревали с металлической рудой, чтобы разрушить химические соединения и освободить металл. Поскольку леса вырубались, а запасы древесины истощались с началом промышленной революции в середине 18 века, древесный уголь был заменен коксом (полученным из угля) при восстановлении руды.Уголь, который также начал использоваться для привода паровых двигателей, стал доминирующим источником энергии в ходе промышленной революции.

А Рост использования нефти

Хотя на протяжении веков нефть (также известная как сырая нефть) использовалась в небольших количествах для таких различных целей, как медицина и уплотнение судов, современная нефтяная эра началась, когда в 1859 году в Пенсильвании была введена в эксплуатацию коммерческая скважина.Нефтяная промышленность в Соединенных Штатах быстро развивалась по мере появления нефтеперерабатывающих заводов, производящих нефтепродукты из сырой нефти. Вскоре нефтяные компании начали экспортировать свой основной продукт — керосин для освещения во все регионы мира. Развитие двигателя внутреннего сгорания и автомобиля в конце 19 века создало новый огромный рынок для другого важного продукта — бензина. Третий крупный продукт, тяжелая нефть, стал заменять уголь на некоторых энергетических рынках после Второй мировой войны.

Крупные нефтяные компании, базирующиеся в основном в Соединенных Штатах, первоначально обнаружили крупные запасы нефти в Соединенных Штатах.В результате нефтяные компании из других стран, особенно из Великобритании, Нидерландов и Франции, начали искать нефть во многих частях мира, особенно на Ближнем Востоке. Англичане ввели в эксплуатацию первое месторождение там (в Иране) незадолго до Первой мировой войны (1914-1918). Во время Первой мировой войны нефтяная промышленность США производила две трети мировых поставок нефти из внутренних источников и импортировала еще одну шестую из Мексики. Однако в конце войны и до открытия продуктивных месторождений в Восточном Техасе в 1930 году Соединенные Штаты, чьи запасы были истощены войной, на несколько лет стали нетто-импортером нефти.



В течение следующих трех десятилетий при периодической федеральной поддержке нефтяные компании США добились огромных успехов в расширении своей деятельности в остальном мире. К 1955 году пять основных нефтяных компаний США производили две трети нефти для мирового нефтяного рынка (не включая Северную Америку и советский блок). Две британские компании производили почти одну треть мировых запасов нефти, а французы — всего одну пятидесятую. Следующие 15 лет были периодом безмятежности для энергоснабжения.Семь крупных нефтяных компаний США и Великобритании поставляли в мир все большее количество дешевой нефти. Мировая цена составляла около доллара за баррель, и в это время Соединенные Штаты были в значительной степени самодостаточными, а их импорт ограничивался квотой.

Две серии событий совпали, превратив эти надежные поставки дешевой нефти в ненадежные поставки дорогой нефти. В 1960 году, разгневанные односторонним снижением цен на нефть семью крупными нефтяными компаниями, правительства основных стран-экспортеров нефти образовали Организацию стран-экспортеров нефти (ОПЕК).Целью ОПЕК было предотвратить дальнейшее снижение цен, которые страны-члены Венесуэла и четыре страны Персидского залива получали за нефть. Им это удалось, но в течение десяти лет они не могли поднять цены. Между тем, рост потребления нефти во всем мире, особенно в Европе и Японии, где нефть вытеснил уголь в качестве основного источника энергии, вызвал колоссальный рост спроса на нефтепродукты.

1973 год положил конец эре безопасной и дешевой нефти.В октябре в результате арабо-израильской войны арабские нефтедобывающие страны сократили добычу нефти и наложили эмбарго на поставки нефти в США и Нидерланды. Хотя арабские сокращения представляли собой потерю менее 7 процентов мировых поставок, они вызвали панику со стороны нефтяных компаний, потребителей, торговцев нефтью и некоторых правительств. Бурные торги за сырую нефть начались, когда несколько стран-производителей начали продавать часть своей нефти с аукциона. Эти торги побудили страны ОПЕК, которых сейчас насчитывается 13, поднять цены на всю свою сырую нефть до уровня в восемь раз выше, чем несколько лет назад.Мировая нефтяная сцена постепенно успокоилась, поскольку мировой экономический спад, частично вызванный повышением цен на нефть, снизил спрос на нефть. Тем временем правительства большинства стран ОПЕК взяли на себя владение нефтяными месторождениями в своих странах.

В 1978 году начался второй нефтяной кризис, когда в результате революции, которая в конечном итоге свергла иранского шаха с трона, иранская добыча нефти и экспорт резко упали. Поскольку Иран был крупным экспортером, потребители снова запаниковали.Воспроизведение событий 1973 года вместе с дикими торгами снова привело к росту цен на нефть в 1979 году. Начало войны между Ираном и Ираком в 1980 году дало дальнейший толчок ценам на нефть. К концу 1980 года цена на сырую нефть в 19 раз превышала цену всего десятью годами ранее.

Очень высокие цены на нефть снова способствовали мировой рецессии и дали большой толчок энергосбережению. Когда спрос на нефть снизился, а предложение увеличилось, мировой рынок нефти резко упал. Значительное увеличение поставок нефти из стран, не входящих в ОПЕК, например в Северное море, Мексику, Бразилию, Египет, Китай и Индию, привело к еще большему снижению цен на нефть.К 1989 году добыча в Советском Союзе достигла 11,42 миллиона баррелей в день, что составляет 19,2 процента мировой добычи в этом году.

Несмотря на низкие мировые цены на нефть, которые преобладали с 1986 года, беспокойство по поводу сбоев по-прежнему оставалось основным направлением энергетической политики в промышленно развитых странах. Кратковременное повышение цен после вторжения Ирака в Кувейт в 1990 году усилило эту озабоченность. Благодаря своим огромным запасам Ближний Восток останется основным источником нефти в обозримом будущем.Однако новые открытия в регионе Каспийского моря позволяют предположить, что такие страны, как Казахстан, могут стать основными источниками нефти в 21 веке.

В 1990-е годы добыча нефти странами, не входящими в ОПЕК, оставалась высокой, а добыча странами ОПЕК восстановилась. Результатом в конце 20 века стал мировой профицит нефти и цены (с поправкой на инфляцию), которые были ниже, чем в 1972 году.

Эксперты не уверены в будущих поставках и ценах на нефть. Низкие цены стимулировали рост потребления нефти, и эксперты задаются вопросом, как долго мировые запасы нефти смогут поддерживать растущий спрос.Многие ведущие мировые геологи-нефтяники считают, что мировые поставки нефти достигнут пика примерно в 80 миллионов баррелей в день в период с 2010 по 2020 год (в 1998 году мировое потребление составляло примерно 70 миллионов баррелей в день). С другой стороны, многие экономисты полагают, что даже скромно. более высокие цены на нефть могут привести к увеличению предложения, поскольку у нефтяных компаний появится экономический стимул к разработке менее доступных нефтяных месторождений.

Природный газ может все шире использоваться вместо нефти в таких сферах, как производство электроэнергии и транспорт.Одна из причин заключается в том, что мировые запасы природного газа с 1976 года увеличились вдвое, отчасти из-за открытия крупных залежей природного газа в России и на Ближнем Востоке. Строятся новые объекты и трубопроводы, которые помогут перерабатывать и транспортировать этот природный газ от добывающих скважин к потребителям.

III НЕФТЬ И ПРИРОДНЫЙ ГАЗ

Нефть (сырая нефть) и природный газ находятся в промышленных количествах в осадочных бассейнах более чем 50 стран во всех частях мира.Самые большие месторождения находятся на Ближнем Востоке, где сосредоточено более половины известных запасов нефти и почти треть известных запасов природного газа. Соединенные Штаты содержат только около 2 процентов известных запасов нефти и 3 процента известных запасов природного газа.

Геологи и другие ученые разработали методы, указывающие на возможность обнаружения нефти или газа глубоко под землей. Эти методы включают в себя аэрофотосъемку особых элементов поверхности, посылку ударных волн через землю и их отражение обратно в инструменты, а также измерение силы тяжести и магнитного поля Земли с помощью чувствительных приборов.Тем не менее, единственный способ найти нефть или газ — это просверлить отверстие в резервуаре. В некоторых случаях нефтяные компании тратят многие миллионы долларов на бурение в перспективных районах только для того, чтобы найти сухие скважины. Долгое время большинство скважин пробурили на суше, но после Второй мировой войны бурение началось на мелководье с платформ, поддерживаемых опорами, которые опирались на морское дно. Позже были разработаны плавучие платформы, которые могли бурить на глубине 1000 м (3300 футов) и более. Крупные месторождения нефти и газа были обнаружены на шельфе: в США, в основном у побережья Мексиканского залива; в Европе, прежде всего в Северном море; в России — в Баренцевом и Карском морях; и у берегов Ньюфаундленда и Бразилии.Большинство крупных находок в будущем могут быть на шельфе.

По мере того, как сырая нефть или природный газ добывается на нефтяном или газовом месторождении, давление в пласте, которое выталкивает материал на поверхность, постепенно снижается. В конце концов, давление упадет настолько, что оставшаяся нефть или газ не переместятся через пористую породу в скважину. Когда эта точка будет достигнута, большая часть газа на газовом месторождении будет добыта, но будет извлечено менее одной трети нефти. Часть оставшейся нефти можно извлечь, используя воду или углекислый газ для проталкивания нефти в скважину, но даже в этом случае от четверти до половины нефти обычно остается в пласте.Пытаясь извлечь эту оставшуюся нефть, нефтяные компании начали использовать химические вещества, чтобы подтолкнуть нефть к скважине, или использовать огонь или пар в пласте, чтобы облегчить течение нефти. Новые методы, которые позволяют операторам бурить как горизонтально, так и вертикально, в очень глубокие структуры, резко снизили стоимость поиска запасов природного газа и нефти.

Сырая нефть транспортируется на нефтеперерабатывающие заводы по трубопроводам, баржам или гигантским океанским танкерам. Нефтеперерабатывающие заводы содержат ряд технологических установок, которые разделяют различные составляющие сырой нефти, нагревая их до разных температур, химически модифицируя их, а затем смешивая их для получения конечных продуктов.Этими конечными продуктами являются, в основном, бензин, керосин, дизельное топливо, топливо для реактивных двигателей, мазут для дома, мазут, смазочные материалы и сырье или исходные материалы для нефтехимии.

Природный газ транспортируется, обычно по трубопроводам, потребителям, которые сжигают его в качестве топлива или, в некоторых случаях, производят нефтехимические продукты из химических веществ, извлеченных из него или очищенных от него. Природный газ можно сжижать при очень низких температурах и перевозить на специальных судах. Этот метод намного дороже, чем транспортировка нефти танкером.Нефть и природный газ конкурируют на нескольких рынках, особенно в производстве тепла для домов, офисов, фабрик и производственных процессов.

На первых порах нефтяная промышленность вызывала значительное загрязнение окружающей среды. Однако с годами, под двойным влиянием усовершенствованных технологий и более строгих правил, он стал намного чище. Стоки с нефтеперерабатывающих заводов значительно сократились, и, хотя выбросы из скважин все еще происходят, новые технологии, как правило, делают их относительно редкими.С другой стороны, охрана океанов намного сложнее. Морские суда по-прежнему являются основным источником разливов нефти. В 1990 году Конгресс Соединенных Штатов принял закон, требующий, чтобы танкеры к концу десятилетия имели двойной корпус.

Еще одним источником загрязнения, связанным с нефтяной промышленностью, является сера в сырой нефти. Постановления национальных и местных органов власти ограничивают количество диоксида серы, которое может сбрасываться заводами и коммунальными предприятиями, сжигающими мазут.Однако, поскольку удаление серы является дорогостоящим процессом, правила по-прежнему разрешают выброс некоторого количества диоксида серы в воздух.

Многие ученые считают, что еще одна потенциальная экологическая проблема, связанная с переработкой и сжиганием большого количества нефти и других ископаемых видов топлива (таких как уголь и природный газ), возникает, когда углекислый газ (побочный продукт сжигания ископаемого топлива), метан (который существует в природном газе, а также является побочным продуктом переработки нефти), и другие побочные газы накапливаются в атмосфере.Эти газы известны как парниковые газы, потому что они улавливают часть энергии Солнца, которая проникает в атмосферу Земли. Эта энергия, захваченная в виде тепла, поддерживает температуру Земли, благоприятную для жизни. Определенное количество парниковых газов естественным образом присутствует в атмосфере. Однако огромное количество нефти, угля и других ископаемых видов топлива, сожженных во время быстрой индустриализации мира за последние 200 лет, является источником более высоких уровней двуокиси углерода в атмосфере.За этот период эти уровни увеличились примерно на 28 процентов. Это увеличение содержания углекислого газа в атмосфере в сочетании с продолжающейся потерей мировых лесов (которые поглощают углекислый газ) заставило многих ученых предсказать повышение глобальной температуры. Это повышение глобальной температуры может нарушить погодные условия, нарушить океанские течения, привести к более сильным штормам и создать другие экологические проблемы. В 1992 году представители более 150 стран собрались в Рио-де-Жанейро, Бразилия, и пришли к согласию о необходимости сокращения мировых выбросов парниковых газов.В 1997 году всемирные делегации снова собрались, на этот раз в Киото, Япония. Во время встречи в Киото представители 160 стран подписали соглашение, известное как Протокол Киото, в соответствии с которым 38 промышленно развитых стран должны ограничить выбросы парниковых газов до уровней, которые в среднем на 5 процентов ниже уровней выбросов 1990 года. выбросы ископаемого топлива для достижения этих уровней, промышленно развитые страны должны будут изменить структуру своей энергетики в сторону источников энергии, которые не производят столько углекислого газа, таких как природный газ, или на альтернативные источники энергии, такие как гидроэлектроэнергия, солнечная энергия, энергия ветра или ядерная энергия.В то время как правительства одних промышленно развитых стран ратифицировали Киотский протокол, другие — нет, в том числе и США.

Горючие сланцы, залежи тяжелой нефти и битуминозные пески являются наиболее распространенными формами нефти в мире. Запасы этих источников во много раз превышают общие известные мировые запасы сырой нефти. Однако из-за высокой стоимости преобразования сланцевого масла и битуминозных песков в пригодные для использования нефтепродукты лишь небольшой процент доступного материала перерабатывается в промышленных масштабах.Промышленность по производству нефтепродуктов из битуминозных песков была создана в Канаде, и Венесуэла изучает перспективы разработки огромных запасов битуминозных песков в бассейне реки Ориноко. Тем не менее, количество нефтепродуктов, производимых из этих двух видов сырья, невелико по сравнению с общим объемом добычи традиционной сырой нефти. До тех пор, пока мировые цены на нефть не вырастут, количество нефти, производимой из горючего сланца и битуминозных песков, вероятно, останется небольшим по сравнению с добычей обычной сырой нефти.

Уголь — это общий термин для широкого спектра твердых материалов с высоким содержанием углерода. Большая часть угля сжигается электроэнергетическими компаниями для производства пара для работы своих генераторов. Некоторое количество угля используется на заводах для обогрева зданий и производственных процессов. Особый высококачественный уголь превращается в металлургический кокс для производства стали.

Мировые запасы угля огромны. Количество угля (измеряемое по содержанию энергии), которое технически и экономически может быть извлечено в нынешних условиях, в пять раз превышает запасы сырой нефти.Всего четыре региона содержат три четверти мировых извлекаемых запасов угля: Соединенные Штаты — 24 процента; страны бывшего Советского Союза — 24%; Китай — 11 процентов; и Западная Европа — 10 процентов.

В промышленно развитых странах большее удобство и более низкая стоимость нефти и газа в начале 20 века фактически вытеснили уголь с рынка для отопления домов и офисов, а также для движения локомотивов. Нефть и газ также сильно сказались на промышленном рынке угля.Только расширяющийся рынок коммунальных услуг позволил добыче угля в Соединенных Штатах, например, оставаться относительно постоянным в период с 1948 по 1973 год. Даже на рынке коммунальных услуг, поскольку нефть и газ захватили большую долю, доля угля в общей энергетической картине резко снизилась в США. США, например, с половины до менее чем одной пятой. Однако резкий скачок цен на нефть после 1973 года дал углю значительное преимущество в стоимости для коммунальных предприятий и крупных промышленных потребителей, и уголь начал возвращать себе некоторые из потерянных рынков.В отличие от промышленно развитых стран, развивающиеся страны с большими запасами угля (такие как Китай и Индия) продолжают использовать уголь для промышленных целей и отопления.

Средняя цена на уголь практически не изменилась с начала 1980-х годов и, согласно прогнозам, снизится в начале XXI века. Однако в промышленно развитых странах необходимость соблюдения более строгих экологических норм сделала сжигание угля более дорогостоящим.

Несмотря на относительную дешевизну и огромные запасы угля, рост его использования с 1973 года был намного меньше, чем ожидалось, потому что уголь связан с гораздо большим количеством экологических проблем, чем нефть.Подземная добыча полезных ископаемых может привести к заболеванию черных легких у шахтеров, опусканию земли из-под шахт и утечке кислоты в грунтовые воды. Открытые горные работы требуют тщательной рекультивации, иначе невосстановленные земли останутся покрытыми шрамами и непродуктивными. Кроме того, сжигание угля вызывает выбросы частиц диоксида серы, оксида азота и других примесей. Кислотные дожди и другие формы осадков с относительно высокой кислотностью, наносящие ущерб озерам и некоторым лесам во многих регионах, как полагают, частично вызваны такими выбросами ( см. Загрязнение воздуха).Закон США о чистом воздухе 1970 года (пересмотренный в 1970 и 1990 годах) обеспечивает федеральную правовую основу для контроля за загрязнением воздуха. Это законодательство значительно сократило выбросы оксидов серы, известных как кислые газы. Например, Закон о чистом воздухе требует, чтобы такие объекты, как угольные электростанции, сжигали уголь с низким содержанием серы. В 1990-х годах озабоченность по поводу возможного потепления планеты в результате парникового эффекта заставила многие правительства задуматься о политике сокращения выбросов углекислого газа, производимых при сжигании угля, нефти и природного газа.Во время быстрой индустриализации мира в XIX и XX веках уровень углекислого газа в атмосфере увеличился примерно на 28 процентов по сравнению с доиндустриальным уровнем.

Решение этих проблем обходится дорого, и вопрос о том, кто должен платить, остается спорным. В результате потребление угля может продолжать расти медленнее, чем можно было бы ожидать. Однако огромные запасы угля, усовершенствованные технологии для снижения загрязнения и дальнейшее развитие газификации угля ( см. Газы, топливо) по-прежнему указывают на то, что рынок угля будет расти в ближайшие годы.

Синтетическое топливо не встречается в природе, но производится из природных материалов. Бензохол, например, представляет собой смесь бензина и спирта, изготовленную из сахаров, производимых живыми растениями. Хотя производство различных видов топлива из угля возможно, крупномасштабное производство топлива из угля, вероятно, будет ограничено высокими затратами и проблемами загрязнения, некоторые из которых еще не известны. Производство спиртового топлива в больших количествах, скорее всего, будет ограничено регионами, такими как части Бразилии, где сочетание дешевой рабочей силы и земли, а также продолжительный вегетационный период делают его экономичным.Таким образом, синтетическое топливо вряд ли в ближайшее время внесет важный вклад в мировое энергоснабжение.

Ядерная энергия образуется при расщеплении или делении атомов урана или более тяжелых элементов. В процессе деления выделяется тепло, которое используется для производства пара для привода турбины для выработки электроэнергии. Эксплуатация ядерного реактора и связанного с ним оборудования для выработки электроэнергии — это только часть взаимосвязанного комплекса работ. Для обеспечения надежного электроснабжения от ядерного деления требуется добыча, переработка и транспортировка урана; обогащение урана (увеличение процентного содержания изотопа урана U-235) и упаковка его в соответствующую форму; строительство и обслуживание реактора и связанного с ним генерирующего оборудования; и обработка и захоронение отработавшего топлива.Эти действия требуют чрезвычайно сложных и интерактивных производственных процессов и множества специализированных навыков.

Великобритания стала одной из первых в развитии ядерной энергетики. К середине 1950-х годов в этой стране производили электричество несколько ядерных реакторов. Первый ядерный реактор, подключенный к электрической распределительной сети в Соединенных Штатах, начал работу в 1957 году в Шиппорте, штат Пенсильвания. Шесть лет спустя был размещен первый заказ на строительство коммерческой атомной электростанции без прямой субсидии федерального правительства.Этот приказ ознаменовал начало попытки быстро преобразовать мировые системы выработки электроэнергии от зависимости от ископаемого топлива к использованию ядерной энергии. К 1970 году в 15 странах мира действовало 90 атомных электростанций. В 1980 году в 22 странах действовали 253 атомные электростанции. Однако попытка перейти от ископаемого топлива к ядерной энергии не удалась из-за быстрого роста затрат, задержек с соблюдением нормативных требований, снижения спроса на электроэнергию и повышенного внимания к безопасности.

Вопросы о безопасности и экономии ядерной энергии вызвали, пожалуй, самую эмоциональную битву за энергию.Когда в конце 1970-х годов разгорелась борьба, сторонники ядерной энергетики утверждали, что не существует реальной альтернативы усилению зависимости от ядерной энергетики. Они признали, что некоторые проблемы остаются, но заявили, что решения будут найдены. Ядерные противники, с другой стороны, подчеркнули ряд оставшихся без ответа вопросов об окружающей среде: каковы эффекты низкого уровня радиации в течение длительных периодов? Какова вероятность крупной аварии на атомной электростанции? Каковы будут последствия такой аварии? Каким образом отходы ядерной энергетики, которые будут оставаться опасными на протяжении веков, могут быть навсегда изолированы от окружающей среды? Эти вопросы безопасности способствовали изменению спецификаций и задержкам строительства атомных электростанций, что еще больше увеличивало расходы.Они также способствовали возникновению второго противоречия: является ли электроэнергия атомных электростанций менее затратной, такой же дорогой или более дорогой, чем электроэнергия, производимая угольными электростанциями? Несмотря на стремительный рост цен на нефть и газ в конце 1970-х — начале 1980-х годов, эти политические и экономические проблемы вызвали в США эффективный мораторий на новые заказы на атомные электростанции. Этот мораторий вступил в силу еще до аварии 1979 г. (расплавление ядерных топливных стержней) на АЭС Три-Майл-Айленд недалеко от Гаррисберга, штат Пенсильвания, и частичного аварии 1986 г. на Чернобыльской АЭС к северу от Киева в Украине ( см. Чернобыль). Авария).Последняя авария привела к гибели людей и случаев лучевой болезни, а также выпустила облако радиоактивности, которое широко распространилось по северному полушарию.

В 1998 г. во всем мире действовало 437 атомных станций. Еще 35 реакторов находились в стадии строительства. Восемнадцать стран вырабатывают не менее 20 процентов своей электроэнергии за счет ядерной энергетики. Крупнейшие отрасли атомной энергетики расположены в США (107 реакторов), Франции (59), Японии (54), Великобритании (35), России (29) и Германии (20).В США больше 20 лет не заказывали новые реакторы. Противодействие общественности, высокие затраты на строительство, строгие строительные и эксплуатационные правила, а также высокие затраты на утилизацию отходов делают строительство и эксплуатацию атомных электростанций намного дороже, чем электростанции, сжигающие ископаемое топливо.

В некоторых промышленно развитых странах электроэнергетическая отрасль реструктурируется с целью разделения монополий (предоставление товара или услуги одним продавцом или производителем) на уровне генерации.Поскольку эта тенденция заставляет владельцев атомных станций сократить операционные расходы и стать более конкурентоспособными, атомная энергетика в США и других западных странах может продолжать сокращаться, если существующие атомные электростанции не смогут адаптироваться к меняющимся рыночным условиям.

Азия широко рассматривается как единственная возможная область роста ядерной энергетики в ближайшем будущем. В Японии, Южной Корее, Тайване и Китае в конце 20 века строились заводы.И наоборот, ряд европейских стран пересмотрели свои обязательства в отношении ядерной энергетики.

Политические партии Швеции обязались отказаться от использования атомной энергии к 2010 году после того, как шведские граждане проголосовали в 1980 году против дальнейшего развития этого источника энергии. Однако промышленность оспаривает эту политику в суде. Кроме того, критики утверждают, что Швеция не может выполнить свои обязательства по сокращению выбросов парниковых газов, не полагаясь на ядерную энергию.

Франция вырабатывает 80 процентов электроэнергии за счет ядерной энергетики.Однако он отменил несколько запланированных реакторов и может заменить стареющие атомные станции на станции, работающие на ископаемом топливе, по экологическим причинам. В результате государственная электроэнергетическая компания Electricité de France планирует диверсифицировать источники производства электроэнергии в стране.

В 1998 году правительство Германии объявило о плане отказа от ядерной энергетики. Однако, как и в Швеции, владельцы атомных станций могут подать в суд на правительство с требованием компенсации за остановку станций до истечения срока их эксплуатации.

В Японии несколько аварий на ядерных установках в середине 1990-х годов подорвали общественную поддержку ядерной энергетики. Растущие запасы плутония в Японии и поставки отработанного ядерного топлива в Европу вызвали международную критику.

Китай, в котором в настоящее время эксплуатируются только три атомные электростанции, планирует расширить свои ядерные возможности. Однако неясно, сможет ли Китай получить достаточное финансирование или он сможет создать необходимую квалифицированную рабочую силу для расширения.

Ряд восточноевропейских стран, включая Россию, Украину, Болгарию, Чешскую Республику, Венгрию, Литву и Словаки, вырабатывают электроэнергию с помощью ядерных реакторов советской конструкции, которые имеют различные недостатки безопасности. Некоторые из этих реакторов имеют ту же конструкцию, что и чернобыльский реактор, взорвавшийся в 1986 году. Соединенные Штаты и другие западные страны работают над решением этих проектных проблем и улучшением эксплуатации, технического обслуживания и обучения на этих станциях.

Солнечная энергия не относится к какой-то отдельной энергетической технологии, а скорее охватывает разнообразный набор технологий возобновляемой энергии, которые питаются от солнечного тепла.Некоторые технологии солнечной энергии, такие как отопление с помощью солнечных батарей, напрямую используют солнечный свет. Другие виды солнечной энергии, такие как гидроэлектроэнергия и топливо из биомассы (древесина, растительные остатки и навоз), зависят от способности Солнца испарять воду и выращивать растительный материал соответственно. Общей чертой технологий солнечной энергии является то, что, в отличие от нефти, газа, угля и нынешних форм ядерной энергетики, солнечная энергия неисчерпаема. Солнечную энергию можно разделить на три основные группы: отопление и охлаждение, производство электроэнергии и топливо из биомассы.

Солнце веками использовалось для обогрева. Жилища на утесе Меса-Верде в Колорадо были построены с выступами скал, которые обеспечивают тень от высокого (и жаркого) летнего Солнца, но позволяют проникать лучам нижнего зимнего Солнца. Сегодня конструкция с небольшим количеством движущихся частей или без них, использующая преимущества Солнца, называется пассивным солнечным нагревом. Начиная с конца 1970-х годов архитекторы все больше знакомились с пассивными солнечными технологиями. В будущем все больше и больше новых зданий будут спроектированы так, чтобы улавливать зимние лучи солнца и не пропускать летние лучи.

Активное солнечное отопление и солнечное водяное отопление — это вариации одной темы, различающиеся в основном стоимостью и масштабом. Типичный активный солнечный нагревательный элемент состоит из труб, установленных в панелях, установленных на крыше. Вода (или иногда другая жидкость), протекающая по трубам, нагревается Солнцем и затем используется в качестве источника горячей воды и тепла для здания. Несмотря на то, что с 1970-х годов количество активных установок для солнечного отопления быстро росло, промышленность столкнулась с простыми проблемами установки и обслуживания, включая такие обычные явления, как утечка воды и засорение трубопровода воздухом.Солнечное охлаждение требует установки более высокой технологии, в которой жидкость охлаждается путем нагрева до промежуточной температуры, чтобы ее можно было использовать для управления холодильным циклом. На сегодняшний день выполнено относительно немного коммерческих установок.

B Производство электроэнергии

Электроэнергия может быть произведена с помощью различных технологий, которые в конечном итоге зависят от воздействия солнечного излучения.Ветряные мельницы и водопады (сами по себе очень старые источники механической энергии) могут использоваться для вращения турбин для выработки электроэнергии. Энергия ветра и падающей воды считаются формами солнечной энергии, потому что солнечная энергия нагрева создает ветер и пополняет воду в реках и ручьях. Большинство существующих ветряных мельниц относительно невелики и содержат десять или более ветряных мельниц в конфигурации сети, которая использует ветровые сдвиги. Напротив, большая часть электроэнергии от гидроэлектростанций поступает из гигантских плотин.Многие участки, подходящие для крупных плотин, уже освоены, особенно в промышленно развитых странах. Однако в 1970-х годах небольшие плотины, использовавшиеся годами ранее для получения механической энергии, были модернизированы для выработки электроэнергии.

Крупномасштабные гидроэлектрические проекты все еще реализуются во многих развивающихся странах. Самая простая форма выработки электроэнергии на солнечной энергии — это использование массива коллекторов, которые нагревают воду для производства пара для вращения турбины. Некоторые из этих объектов уже существуют.

Другие источники солнечной электроэнергии включают высокотехнологичные варианты, которые в больших масштабах коммерчески не проверены. Фотоэлектрические элементы ( см. Фотоэлектрический эффект; солнечная энергия), которые преобразуют солнечный свет непосредственно в электричество, в настоящее время используются в удаленных местах для питания орбитальных космических спутников, ворот на необслуживаемых железнодорожных переездах и ирригационных насосов. Прежде чем станет возможным широкое использование фотоэлектрических элементов, необходим прогресс в снижении затрат.Коммерческое развитие и других методов кажется далеким будущим. Тепловая конверсия океана (OTC) генерирует электричество на морских платформах; турбина вращается за счет энергии, генерируемой, когда холодная морская вода перемещается с большой глубины на теплую поверхность. Также весьма спекулятивным остается идея использования космических спутников для передачи электроэнергии через микроволны на Землю.

Топливо из биомассы включает несколько различных форм, включая спиртовое топливо (упомянутое ранее), навоз и древесину.Древесина и навоз по-прежнему являются основными видами топлива в некоторых развивающихся странах, а высокие цены на нефть вызвали возрождение интереса к древесине в промышленно развитых странах. Исследователи уделяют все больше внимания развитию так называемых энергетических культур (многолетние травы и деревья, выращиваемые на сельскохозяйственных землях). Однако есть некоторые опасения, что сильная зависимость от сельского хозяйства в качестве источника энергии может привести к росту цен как на продукты питания, так и на землю.

Общее количество используемой в настоящее время солнечной энергии невозможно точно оценить, поскольку некоторые источники не зарегистрированы.Однако в начале 1980-х годов два основных источника солнечной энергии, гидроэлектрическая энергия и биомасса, внесли более чем в два раза больше ядерной энергии в мировое энергоснабжение. Тем не менее, эти два источника ограничены наличием участков плотин и наличием земли для выращивания деревьев и других растительных материалов, поэтому будущее развитие солнечной энергии будет зависеть от широкого спектра технологических достижений.

Потенциал солнечной энергии, за исключением гидроэлектроэнергии, останется недоиспользованным и после 2000 года, поскольку солнечная энергия по-прежнему намного дороже, чем энергия, полученная из ископаемого топлива.Долгосрочные перспективы солнечной энергии во многом зависят от того, вырастут ли цены на ископаемое топливо и станут ли экологические нормы более строгими. Например, более строгий экологический контроль при сжигании ископаемого топлива может привести к увеличению цен на уголь и нефть, в результате чего солнечная энергия станет менее дорогим источником энергии по сравнению с этим.

VIII ГЕОТЕРМИЧЕСКАЯ ЭНЕРГИЯ

Геотермальная энергия, один из аспектов науки, известной как геотермия, основана на том факте, что земля тем горячее, чем глубже бурятся скважины под поверхностью.Вода и пар, циркулирующие в глубоких горячих породах, если их поднять на поверхность, могут использоваться для приведения в действие турбины для производства электроэнергии или могут передаваться через здания в качестве тепла. Некоторые геотермальные энергетические системы используют естественные источники геотермальной воды и пара, тогда как другие системы закачивают воду в глубокие горячие породы. Хотя теоретически он безграничен, в большинстве обитаемых районов мира этот подземный источник энергии расположен настолько глубоко, что бурение скважин для его вскрытия обходится очень дорого.

IX УЛУЧШЕНИЯ ЭНЕРГОЭФФЕКТИВНОСТИ

Помимо развития альтернативных источников энергии, поставки энергии могут быть расширены за счет сохранения (планового управления) имеющихся в настоящее время ресурсов.Можно описать три типа возможных практик энергосбережения. Первый тип — это сокращение, то есть, например, отказ от закрытия заводов для уменьшения количества потребляемой энергии или сокращение поездок для уменьшения количества сжигаемого бензина. Второй тип — это капитальный ремонт, то есть изменение образа жизни людей и способа производства товаров и услуг, например, замедление дальнейшей субурбанизации общества, использование менее энергоемких материалов в производственных процессах и уменьшение количества энергии, потребляемой некоторыми продуктами. (например, автомобили).Третий тип включает более эффективное использование энергии, то есть приспособление к более высоким затратам на энергию, например, инвестирование в автомобили, которые едут дальше на единицу топлива, улавливание отработанного тепла на заводах и его повторное использование, а также изоляция домов. Этот третий вариант требует менее радикальных изменений в образе жизни, поэтому правительства и общества чаще всего выбирают его, а не два других варианта.

К 1980 году многие люди пришли к пониманию того, что повышение энергоэффективности может помочь мировому энергетическому балансу в краткосрочной и среднесрочной перспективе и что продуктивное энергосбережение следует рассматривать как не меньшую альтернативу энергии, чем сами источники энергии.Существенная экономия энергии начала происходить в Соединенных Штатах в 1970-х годах, когда, например, федеральное правительство ввело общенациональный стандарт эффективности автомобилей и предложило налоговые вычеты за утепление домов и установку солнечных батарей. Существенная дополнительная экономия энергии за счет мер по энергосбережению представляется возможной без существенного влияния на образ жизни людей.

Однако на пути стоит ряд препятствий. Одним из основных препятствий на пути к продуктивному сохранению является его крайне фрагментированный и неприглядный характер; это требует от сотен миллионов людей повседневных дел, таких как выключение света и поддержание надлежащего накачивания шин.Еще одним препятствием стала цена на энергию. С поправкой на инфляцию стоимость бензина в США в 1998 году была ниже, чем в 1972 году. Низкие цены на энергию затрудняют убеждение людей вкладывать средства в энергоэффективность. С 1973 до середины 1980-х годов, когда в Соединенных Штатах выросли цены на нефть, потребление энергии на человека упало примерно на 14 процентов, в значительной степени из-за мер по сохранению. Однако, поскольку в 1990-е годы нефть подешевела, министерство энергетики США прогнозирует, что к 2000 году потребление энергии в Соединенных Штатах вырастет до 2 процентов от уровня 1973 года.Со временем повышение энергоэффективности окупается с лихвой. Однако они требуют больших капитальных вложений, что не очень привлекательно при низких ценах на энергию. Основные области таких улучшений описаны ниже.

В то время как транспорт использует 25 процентов всей энергии, потребляемой в Соединенных Штатах, на его долю приходится 66 процентов нефти, используемой в Соединенных Штатах. Автомобили, построенные в других странах, долгое время имели тенденцию быть более эффективными, чем американские, отчасти из-за давления высоких налогов на бензин.В 1975 году Конгресс США принял закон, обязывающий к 1985 году удвоить топливную экономичность новых автомобилей. Этот закон в сочетании с нехваткой бензина в 1974 и 1979 годах и значительно более высокими ценами на бензин (особенно с 1979 года) привел к средней эффективности всех американских автомобилей. улучшиться примерно на 40 процентов в период с 1975 по 1990 год. Однако большая часть этого улучшения была компенсирована резким увеличением количества автомобилей на дорогах и ростом продаж внедорожников и легких грузовиков (которые не покрываются федеральные стандарты эффективности).К 1996 году количество автомобилей, используемых во всем мире, выросло до 652 миллионов единиц. Ожидается, что к 2018 году это число увеличится почти до 1 миллиарда. Эксперты прогнозируют, что, если не будут разработаны более эффективные технологии, этот рост приведет к увеличению спроса на бензин более чем на 20 миллионов баррелей в день. Сегодня производители автомобилей обладают техническими возможностями для создания автомобилей с гораздо более высокой топливной экономичностью, чем предписано Конгрессом. Однако массовое производство автомобилей с такой эффективностью потребует огромных капитальных вложений.Новые технологии двигателей, использующие электрические батареи или высокоэффективные топливные элементы, а также двигатели, работающие на природном газе, могут сыграть гораздо более важную роль в начале 21 века. Повышение цен на бензин и парковку стимулировало использование двух других видов транспорта: совместного использования пассажиров (фургон или автомобильный пул) и общественного транспорта. Эти методы могут быть очень эффективными, но разрастающийся характер многих городов США может затруднить их использование.

Управляющие бизнесом, ориентированные на прибыль, все чаще обращают внимание на модификацию продукции и производственных процессов с целью экономии энергии.Фактически, промышленный сектор продемонстрировал более значительное повышение эффективности, чем жилищный или транспортный сектор. Улучшения в производстве можно разделить на три широкие, в некоторой степени перекрывающиеся, категории: улучшение домашнего хозяйства, текущее обслуживание печей и использование только необходимого освещения; регенерация отходов рекуперация тепла и переработка побочных продуктов отходов; и технологические инновации, модернизирующие продукты и процессы для воплощения более эффективных технологий.

В 1950-х и 1960-х годах эффективному использованию энергии часто пренебрегали при строительстве зданий и домов, но высокие цены на энергию 1970-х изменили это. Некоторые офисные здания, построенные с 1980 года, используют только пятую часть энергии, потребляемой зданиями, построенными всего десятью годами ранее. Методы экономии энергии включают проектирование и размещение зданий для использования пассивного солнечного тепла, использование компьютеров для мониторинга и регулирования использования электроэнергии, а также инвестирование в более эффективное освещение и в улучшенные системы отопления и охлаждения.Подход на основе жизненного цикла, который учитывает общие затраты за весь срок службы здания, а не только начальную стоимость строительства или продажную цену, способствует большей эффективности. Кроме того, успешной была реконструкция старых зданий, в которой новые компоненты и оборудование используются в существующих конструкциях.


Химия, история

Химия, история, история изучения состава, структуры и свойств материальных субстанций, взаимодействий между субстанциями и воздействия на субстанции добавления или отвода энергии в любой из ее различных форм.С самых ранних зарегистрированных времен люди наблюдали химические изменения и предполагали их причины. Проследив историю этих наблюдений и предположений, можно проследить постепенную эволюцию идей и концепций, которые привели к современной химии.

II ДРЕВНИЕ ТЕХНОЛОГИИ И ФИЛОСОФИЯ

Первые известные химические процессы были выполнены ремесленниками Месопотамии, Египта и Китая.Сначала кузнецы этих земель работали с самородными металлами, такими как золото или медь, которые иногда встречаются в природе в чистом виде, но они быстро научились плавить металлические руды (в основном оксиды и сульфиды металлов), нагревая их деревом или древесным углем. для получения металлов. Постепенное использование меди, бронзы и железа породило названия, которые археологи применяли к соответствующим эпохам. Примитивная химическая технология также возникла в этих культурах, когда красильщики открыли методы нанесения красок на различные типы тканей, и когда гончары научились готовить глазури, а позже и стекло.

Большинство этих ремесленников работали в храмах и дворцах, производя предметы роскоши для священников и знати. В храмах у жрецов особенно было время поразмышлять о происхождении изменений, которые они увидели в окружающем их мире. Их теории часто включали магию, но они также развивали астрономические, математические и космологические идеи, которые они использовали в попытках объяснить некоторые изменения, которые теперь считаются химическими.

III ГРЕЧЕСКАЯ ЕСТЕСТВЕННАЯ ФИЛОСОФИЯ

Первой культурой, которая рассмотрела эти идеи с научной точки зрения, были греки.Со времен Фалеса, около 600 г. до н. Э., Греческие философы делали логические рассуждения о физическом мире, а не полагались на мифы для объяснения явлений. Сам Фалес предполагал, что вся материя произошла из воды, которая могла затвердеть до земли или испариться в воздух. Его преемники расширили эту теорию до идеи, что мир состоит из четырех элементов: земли, воды, воздуха и огня. Демокрит думал, что эти элементы состоят из атомов, мельчайших частиц, движущихся в вакууме. Другие, особенно Аристотель, полагали, что элементы образуют континуум массы, и поэтому вакуум существовать не может.Идея атома быстро утратила популярность среди греков, но никогда не была забыта полностью. Когда он был возрожден в эпоху Возрождения, он стал основой современной атомной теории ( см. Атом).

Аристотель стал самым влиятельным из греческих философов, и его идеи доминировали в науке почти два тысячелетия после его смерти в 323 г. до н. Э. Он считал, что в природе есть четыре качества: тепло, холод, влажность и сухость. Каждый из четырех элементов состоит из пар этих качеств; например, огонь был горячим и сухим, вода была холодной и влажной, воздух был горячим и влажным, а земля была холодной и сухой.Эти элементы вместе со своими качествами в различных пропорциях образуют составляющие планеты Земля. Поскольку количество каждого качества в элементе могло быть изменено, элементы могли быть заменены друг на друга; таким образом, считалось возможным также преобразовать материальные вещества, которые были образованы из элементов свинца, например, в золото.

IV АЛХИМИЯ: ПОДЪЕМ И СПАСЕНИЕ

Теория Аристотеля была принята мастерами-практиками, особенно в Александрии, Египет, которая после 300 г. до н. Э. Стала интеллектуальным центром древнего мира.Они думали, что металлы на земле стремятся становиться все более и более совершенными и постепенно превращаются в золото. Им казалось, что они должны иметь возможность быстрее выполнять тот же процесс в своих собственных мастерских и так искусственно превращать обычные металлы в золото. Начиная примерно с 100 г. н.э. эта идея доминировала в умах философов, а также мастеров-металлистов, и было написано большое количество трактатов об искусстве трансмутации, которое стало известно как алхимия. Хотя никому и никогда не удавалось создать золото, в поисках совершенства металлов был открыт ряд химических процессов.

Почти в то же время и, вероятно, независимо, подобная алхимия возникла в Китае. Здесь также целью было получить золото, хотя и не из-за его денежной стоимости. Китайцы верили, что золото — это лекарство, которое может даровать долгую жизнь или даже бессмертие любому, кто его употребляет. Как и египтяне, китайцы получили практические химические знания из неверных теорий.

А Рассеивание греческой мысли

После упадка Римской империи греческие письма стали менее открыто изучаться в Западной Европе, и даже в Восточном Средиземноморье им в значительной степени пренебрегали.Однако в VI веке секта христиан, известная как несториане, чьим языком был сирийский, распространила свое влияние по всей Малой Азии. Они основали университет в Эдессе в Месопотамии и перевели большое количество греческих философских и медицинских сочинений на сирийский язык для использования среди ученых.

В VII и VIII веках арабские завоеватели распространили исламскую культуру на большей части Малой Азии, Северной Африки и Испании. Багдадские халифы стали активными покровителями науки и образования.Сирийский перевод греческих текстов был снова переведен, на этот раз на арабский, и вместе с остальной частью греческого языка обучение идеям и практике алхимии снова процветало.

Арабские алхимики также контактировали с Китаем на Востоке, получив таким образом представление о золоте как лекарстве, а также греческое представление о золоте как об идеальном металле. Считалось, что особый агент, философский камень, стимулирует трансмутацию, и это стало предметом поиска алхимиков.Теперь у алхимиков появился дополнительный стимул к изучению химических процессов, поскольку они могли привести не только к богатству, но и к здоровью. Неуклонно продвигалось изучение химикатов и химических аппаратов. Были обнаружены такие важные реагенты, как едкие щелочи ( см. щелочные металлы) и соли аммония ( см. аммиак), и оборудование для перегонки постоянно улучшалось. Раннее осознание потребности в более количественных методах также появилось в некоторых арабских рецептах, где были даны конкретные инструкции относительно количества используемых реагентов.

B Позднее средневековье

Великое интеллектуальное пробуждение началось в Западной Европе в 11 веке. Частично это стимулировалось культурным обменом между арабами и западными учеными на Сицилии и в Испании. Были созданы школы переводчиков, и их переводы передавали арабские философские и научные идеи европейским ученым. Таким образом, знание греческой науки, переданное через промежуточные языки сирийский и арабский, распространилось на научном языке латыни и, в конечном итоге, распространилось по всей Европе.Многие из рукописей, которые охотнее всего читали, касались алхимии.

Эти рукописи были двух типов: одни были почти чисто практическими, а другие пытались применить теории природы материи к алхимическим проблемам. Среди обсуждаемых практических вопросов была дистилляция. Производство стекла было значительно улучшено, особенно в Венеции, и теперь стало возможным построить даже лучший дистилляционный аппарат, чем арабы, и конденсировать более летучие продукты дистилляции.Среди важных продуктов, полученных таким образом, были спирт и минеральные кислоты: азотная, царская водка (смесь азотной и соляной), серная и соляная. С помощью этих мощных реагентов можно провести множество новых реакций. Слухи об открытии Китаем нитратов и производстве пороха также дошли до Запада через арабов. Китайцы сначала использовали порох для фейерверков, но на Западе он быстро стал важной частью военных действий. К концу 13 века в Европе существовала эффективная химическая технология.

Второй тип алхимических рукописей, переданных арабами, касался теории. Многие из этих писаний раскрывают мистический характер, который мало способствовал развитию химии, но другие пытались объяснить трансмутацию в физических терминах. Арабы основывали свои теории материи на идеях Аристотеля, но их мышление было более конкретным, чем его. Особенно это касалось их представлений о составе металлов. Они считали, что металлы состоят из серы и ртути, но не из знакомых им веществ, с которыми они были прекрасно знакомы, а из принципа ртути, придававшего металлам свойство текучести, и принципа серы, который делал вещества горючими и заставлял металлы становиться горючими. ржаветь.Химические реакции были объяснены с точки зрения изменения количества этих принципов в материальных веществах.

В течение 13 и 14 веков влияние Аристотеля на все отрасли научной мысли стало ослабевать. Фактическое наблюдение за поведением материи поставило под сомнение относительно простые объяснения, данные Аристотелем; такие сомнения быстро распространились после изобретения около 1450 года печати с подвижным шрифтом. После 1500 печатных работ по алхимии появилось все больше, равно как и работ, посвященных технике.Результат этого возрастающего знания стал очевиден в 16 веке.

C1 Расцвет количественных методов

Среди влиятельных книг, появившихся в это время, были практические работы по горному делу и металлургии. В этих трактатах много места уделялось анализу руд на содержание в них ценных металлов, работе, требующей использования лабораторных весов или весов, а также разработке количественных методов ( см. Химический анализ).Работники других областей, особенно медицины, начали осознавать необходимость большей точности. Врачам, некоторые из которых были алхимиками, необходимо было знать точный вес или объем вводимых ими доз. Таким образом, они использовали химические методы приготовления лекарств.

Эти методы были объединены и активно продвигались эксцентричным швейцарским врачом Теофрастом фон Гогенхаймом, которого обычно звали Парацельс. Он вырос в горнодобывающем районе и познакомился со свойствами металлов и их соединений, которые, по его мнению, превосходили лечебные травы, используемые ортодоксальными врачами.Он провел большую часть своей жизни в ожесточенных спорах с медицинским истеблишментом того времени, и в процессе он основал науку ятрохимию (использование химических лекарств), предшественницу фармакологии. Он и его последователи открыли много новых соединений и химических реакций. Он модифицировал старую теорию состава металлов сера-ртуть, добавив третий компонент, соль, землистую часть всех веществ. Он заявил, что при горении дерева горит сера, испаряется ртуть, а превращается в пепел соль.Как и в случае теории серы и ртути, это были принципы, а не материальные вещества. Его акцент на горючей сере был важен для более позднего развития химии. Ятрохимики, последовавшие за Парацельсом, изменили некоторые из его смелых идей и собрали его и свои собственные рецепты приготовления химических лекарств. Наконец, в конце XVI века Андреас Либавиус опубликовал свою книгу «Алхимия , », которая систематизировала знания ятрохимиков и часто называлась первым учебником химии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to Top