Posted in: Разное

Что такое степень сжатия двигателя: Компрессия и степень сжатия двигателя автомобиля

Содержание

Компрессия и степень сжатия двигателя автомобиля

Кто изучает устройство автомобиля, встречает непонятные термины из области работы двигателя. Расскажем что такое компрессия и степень сжатия мотора, их определения. Рассмотрим работу мотора с изменяемой степенью сжатия.

Что такое степень сжатия

Это отношение полного объема цилиндра к объему камеры сгорания. На бензиновом моторе, в зависимости от конкретной задачи, степень сжатия может серьезно варьироваться, достигая величин в 8 до 12. На дизельных двигателях из-за их конструктивных особенностей она намного больше и оставляет от 14 до 18 единиц. Для бензиновых двигателей, чем выше степень сжатия — тем выше удельная мощность. Но если её сильно увеличить, то может снизится ресурс и возрастает риск проблем с мотором при заправке некачественным топливом.

Что такое компрессия двигателя

Это максимальное давление воздуха в камере сгорания в конце такта сжатия.

Компрессия это давление в цилиндре. Поэтому она зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии.

При снижении уровня компрессии необходимо выяснить причину. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 грамм моторного масла. Процедуру замера повторяют. Если показания манометра выросли — причина падения в поршневых кольцах, если остались на прежнем уровне — в клапанах.

Двигатели с изменяемой степенью сжатия

Японские производители улучшили эффективность традиционного двигателя за счет поднятия степени сжатия до 14:1, что ранее было просто невозможно. Они заявляют, что с данной степенью сжатия могут работать, как бензиновый, так и дизельный двигатели, причем на обычном 95-ом бензине. Как это возможно? Один из недостатков бензиновых моторов с искровым зажиганием — относительно невысокая степень сжатия. Если ее поднять с нынешних 10:1 до 12,5:1, то эффективность использования теплоты сгоревшего топлива возрастет процентов на шесть. Но чем сильнее сжимаем поршнем воздух с парами бензина, тем выше риск взрывного неконтролируемого самовоспламенения смеси — это детонация, страшный враг двигателя: ударные нагрузки, перегрев, разрушение поршней и колец.

Не зря степень сжатия бензиновых агрегатов редко поднимается выше 11:1.

На самом деле все дело в снижении средней температуры цикла. Чем «холоднее» горючая смесь в камере сгорания, тем сильнее ее можно сжать без риска возникновения детонации. Думаете, японцы решили охлаждать всасываемый воздух? Нет, они занялись системой выпуска.


Этот прием давно известен по гоночным моторам — «настроенные» выпускные каналы по схеме 4-2-1, в которых порции выхлопных газов из всех четырех цилиндров не «толкаются» друг с другом, а строго поочередно вылетают в атмосферу. При чем здесь температура цикла? «Настроенный» выпуск за счет газодинамического наддува улучшает продувку цилиндров — в них остается меньше горячих отработавших газов, которые неизбежно подмешиваются к свежему воздуху на такте впуска и поднимают температуру в конце такта сжатия. Как уверяют, если долю выхлопа снизить с обычных 8% до 4%, то степень сжатия можно безболезненно поднять на три единицы. А за счет охлаждения воздуха при распыле бензина прямо в цилиндр — сжатие можно увеличить еще на единичку.

Чтобы реализовать продвинутый газообмен, пришлось раскошелиться на фазовращатели на обоих распредвалах — и впускном, и выпускном. А вдобавок с помощью компьютерного моделирования придумать еще кучу всяких ухищрений. К примеру, чтобы улучшить «термоизоляцию» камеры сгорания, диаметр цилиндра пришлось уменьшить с нынешних 87,5 мм до 83,5 мм, соответственно увеличив ход поршня.

Длинноходность способствует увеличению крутящего момента на низких оборотах, вдобавок тягу «на низах» улучшают непосредственный впрыск и увеличение степени сжатия — и возникает эффект, который именуют downspeeding. Мол, мотор настолько хорошо тянет «внизу», что среднестатистические обороты при езде снижаются на 15% — это дает эффект по части снижения расхода бензина и выбросов СО

2 по сравнению с турбомотором с уменьшенным до 1,4 л рабочим объемом.

Голая правда о технологии Mazda SkyActive :: Autonews

Компания Мазда не так давно действительно сделала бензиновый атмосферный двигатель с рекордной степенью сжатия — 14:1, достигнутой в том числе и за счет «улучшения вентиляции цилиндров» — оригинальной доработки системы выпуска. Снижение «средней температуры цикла» позволило вроде бы бороться и даже победить «неизбежную детонацию».

Степени сжатия практически всех современных атмосферных моторов (которых уже скоро и вовсе не останется) достигли критических величин в 10,5-11* единиц еще лет 20 назад и остаются практически неизменны с того момента (хороший пример —  моторы BMW M50 и BMW S50). Рекордные же показатели, находящиеся в общем-то на грани теоретической детонации, чаще всего демонстрируют немногочисленные «докрученные» моторы спортивных автомобилей. Так или иначе, в мировом двигателестроении до недавнего времени существовали единицы моторов с СЖ около 12.

Зачем же, почему и чем именно важен этот показатель? Зачем стране такие рекорды?

*Здесь и далее говорим только про атмосферные моторы.

Важность степени сжатия можно оценить рассмотрев прямой показатель эффективности двигателя — крутящий момент приведенный к объему. Понятно, что на деле это может быть лишь точка, или же довольно узкий участок на моментной характеристике — нам важна лишь максимально достигнутая цифра. Около 20 лет назад, BMW одной из первых добилась соотношения 1 Нм на 10 кубиков рабочего объема. И прогресс в эффективности на этом фактически остановился. Компании начали больше заниматься экологией и интегральной характеристикой момента — работать с фазами газораспределения и их эффективностью. Фазовращателями  просто «раскатали» моментную характеристику влево и вправо. Про все это я уже говорил.

На момент 2012 года, не существует атмосферного гражданского мотора с характеристиками существенно превышающими «золотое» соотношение эффективности — 1 Нм на 10 куб.см. рабочего объема. Моторы получающие хотя бы на 7-10% больше — дожаты до предела — это привелегия спортивных двигателей Ferrari, Porsche, BMW Motorsport. Тут чаще всего или помудрили с фазами, или выставили критические углы зажигания ну и степень сжатия, разумеется, по верхней возможной границе сделали.

Массовый же потребитель в основном ориентируется на гонку лошадиных сил и фактически не замечает, что продают-то ему почти тот же самый мотор, если не хуже. Разумеется, он стал ЕВРО4, старт-стоп и чего-то там еще, но эффективность осталась такая же, если не ниже…

Лишние 10-20 лошадиных сил, по сравнению с предыдущей моделью, подняты заменой прошивки с сопутствующим добавлением оборотов. Также, возможно, конструкторы чуть поиграли с фазами — приподняли холостые — сдвинули всю характеристику вправо. По такому пути идут все производители: так или иначе, именно такова главная тенденция в ретроспективе развития мирового моторостроения за последние 20-30 лет.

Вернемся к понятию «степень сжатия» и вспомним волговский «ЗМЗ-21», мотор американской технологии 50-х годов: СЖ 6,7:1, фактически — обычный распространенный в то время «американец» советского изготовления. Переваривал бензины от А-66 до А76 (современный — АИ-80). На нем был достигнут момент около 167 Нм при рабочем объеме около 2,44 л. BMW в 1991 году примерно с такого же объема двигателя M50B25 снимали привычные сейчас 250 Нм. Прогресс по степени сжатия — примерно полуторакратный. Прогресс по моменту… практически те же 1,5 раза! Линейная зависимость. Ну так давайте увеличим СЖ еще в 1,5 раза, примерно до 15 единиц и мы получим что-нибудь около 375 Нм?!

Ничего подобного: на самом деле, эффективность двигателя зависит от степени сжатия нелинейно. К 10-11 единицам теоретическая кривая эффективности входит в зону насыщения и к условным 12,5 единицам на графике наступает перегиб — дальнейший рост происходит крайне неохотно. Об этом же говорит и сама Мазда:

К чему я все это? Мазда обещает СЖ 14:1? Рекорд? Разберемся, по сравнению с чем?

Практически все современные моторы оснащены непосредственным вспрыском. Послойное смесеобразование, использование дополнительной «обычной» форсунки, оптимизация камеры сгорания — все это пути для понижения температуры смеси — снижения склонности к детонации. Один и тот же двигатель с СЖ 11-12 может быть более, или напротив — менее склонен к детонации, в зависимости от режима его питания.

Так что берем обычный современный двигатель, редактируем его в сторону снижения детонации и получаем 12:1 с допустимой эксплуатацией на АИ-95… И не детонирует. Думаю, с обязательным ограничением на 98-й, получим и беспроблемные 12,5:1 при использовании, повторюсь, совершенно доступных технологий. То есть, если и сравниваем, при прочих равных, то сравниваем не с мотором 80-х, а с мотором 2012 года — со всеми возможными современными ухищрениями. Если сравниваем «маздовские» 14:1, то примерно с 12:1, что сегодня вполне себе норма, как видите.

Одна из ключевых технологий при этом — непосредственный впрыск и оптимизация формы камеры сгорания.

Кроме того, стоит рассматривать каждый случай в отдельности — декларируемая цифра может несколько отличаться от реалий — идеально точно геометрию камеры сгорания редко кто высчитывает. Чаще всего, указанные производителем данные о степени сжатия довольно условны, отображают, так сказать, общую тенденцию, или «среднетехнологическое» значение. Компрессия двигателей M54B22 и M54B30, или же M50B20 и M50B25, например, отличается заметно больше, чем того стоит ожидать зная указанные степени сжатия этих моторов. В Сети хватает и практических расчетов для конкретного мотора… Реальные цифры могут варьироваться в довольно широком диапазоне. Разумеется, всему есть предел и двигатель с заявленной степенью сжатия 10:1 на деле вряд ли окажется дожатым до 12:1. Учитывая естественный технологический разброс и, например, возможный нагар в камере сгорания, вы никогда не сможете точно предсказать фактическую склонность двигателя к детонации на основе одной только паспортной степени сжатия.

К чему я все это пишу: даже указанная производителем степень сжатия требует фактической проверки. Самая простая из которых — точное измерение компрессии. И вот тут, при прочих равных, можно пытаться строить теорию склонности этого ДВС к детонации. Одна-две «лишних» атмосферы и стоит выбирать следующий сорт бензина…

Хорошо, представим, что «честные» 12:1 сопоставляются с технологическим совершенством — честными и рекордными 14:1. Сравнение, допустим, полностью корректное. Что нам дадут «рекордные» дополнительные 2 единицы? Хотя бы +10% к эффективности? Ничуть не бывало: перед нами, как видно, все те же 200-205 Нм которые показывают в паспортных данных на Skyactive-G. Кстати, почему, интересно, для канадского рынка указана степень сжатия 13:1? Дефорсировали мотор? Отнюдь: показатели момента и мощности те же самые. А теперь сюрприз. Что случилось с Mazda3 с таким же мотором? Нам говорят, что «охладительный» волшебный коллектор не поместился, там стоит обычный и заявленная степень сжатия уже не 14 и даже не 13…  12:1! Все характеристики прежние, заявленная разница в моменте — 3 Нм. Полагаю, даже одинаковые двигатели могут давать такой разброс на практике. Оставили бы все как есть — чем было бы оправдать отсутствие оригинального коллектора? Если эти 3 Нм действительно соответствуют разнице «технического» прорыва по сравнению с обычным двигателем с СЖ 12:1, то оно того стоит вообще? Ради чего городили весь этот огород? 3 Нм? Что-то около 1% на моментной характеристике?

Суровая действительно такова: двигатели MAZDA SKYACTIV-G в вариантах степеней сжатия 14:1, 13:1 и 12:1 фактически ничем друг от друга не отличаются. Да, это один и тот же мотор. Вот такой вот извращенный изощренный маркетинг. Mazda сделала совершенно обычный современный двигатель (ничем не лучше и не хуже аналогов) и завернула его в блестящую маркетинговую шелуху. Продавать же как-то надо…

P.S.Распространенный двигатель BMW N46B20 (в общем-то, аналогичный более раннему N42B20 аж 2001 года выпуска) при равном рабочем объеме, имеет примерно аналогичные характеристики эффективности, но при действительной степени сжатия… всего 10,5:1. Вот только рабочий момент у него доступен уже с 1200 оборотов! Двигатель Мазды «оживает» едва после 2000 об/мин… Почти 1000 оборотов — это пропасть. Делать надо было «момент», а не степень сжатия. Но момент сложнее «продать».

Подготовлено в сотрудничестве с bmwservice.livejournal.com

Пять систем, которые снижают ресурс двигателя автомобиля — Российская газета

Не секрет, что новые моторы разрабатываются исходя из требований экономичности и экологичности, а потребительские характеристики при этом уходят на дальний план. В итоге снижается надежность и ресурс двигателя.

При выборе автомобиля стоит учитывать эту тенденцию. Есть список характеристик, которые неизбежно сокращают ресурс двигателя.

Первый пункт — это снижение объема камер сгорания. Это уменьшает выброс вредных веществ в атмосферу. При этом обозначенная мощность мотора обеспечивается за счет увеличенной степени сжатия, которая позволяет улучшить скорость сгорания.

Степень сжатия ограничена топливными характеристиками и материалами, из которых сделаны механизмы поршневой группы. Если степень сжатия увеличивается на треть, то воздействие на поршень и подвижные части вырастает в два раза. С этой точки зрения в легковых авто оптимальными потребительскими свойствами обладают 1,6-литровые 4-цилиндровые двигатели, пишет aif.ru.

Второй пункт — применение поршней с короткой юбкой. Логика производителя следующая. Чем меньше поршень, тем он легче. И благодаря этому он обеспечивает большую отдачу и эффективность. Сокращение юбки поршня в сочетании уменьшением плеча шатуна влечет за собой рост нагрузки на стенки цилиндров. На высоких оборотах такой поршень иногда пробивает масляную пленку и соприкасается с металлом цилиндров. Что, конечно, не продляет службу поршневой группы.

Третьим в списке идет использование турбонаддува на малообъемных моторах. Чаще всего встречается турбонаддув, работающий на энергии выхлопных газов для вращения центростремительной турбины. Температура в ней достигает 1000 градусов. Чем больше литровая мощность мотора — тем сильнее износ. Чаще всего турбоагрегат ломается на пороге 100 тысяч километров. Турбина может быстро вывести из строя поршневую часть, поскольку турбокомпрессор возьмет весь запас моторного масла.

Четвертый пункт — отсутствие прогрева двигателя при минусовых температурах. Действительно, современные моторы могут начинать работу без прогрева благодаря новейшим системам впрыска. При понижении температуры нагрузка на детали резко возрастает: двигателю нужно прокачать масло и прогреться хотя бы минут пять. Но из-за экологических требований производители опускают эту рекомендацию. А срок службы шатунно-поршневой группы сокращается.

Пятой в списке стоит система «старт/стоп». Ее придумали немецкие автопроизводители для отсечения режима холостого хода, при котором в атмосферу выбрасывается немало вредных веществ. Как только скорость автомобиля падает до нуля, система отключает двигатель. Проблема в том, что каждый мотор рассчитан на определенное число пусков. Без этой системы за 20 лет двигатель запустится, в среднем, 100 тысяч раз. С ней — около 10 миллионов. Чем больше пусков — тем сильнее происходит выработка трущихся частей.

Компрессия и степень сжатия дизельного двигателя

Двигатель внутреннего сгорания (бензиновый, дизельный) является сложным устройством, состоящим из множеств механизмов и систем.

Взаимодействие их между собой позволяет преобразовывать энергию, возникающую при сгорании топливно-воздушной смеси во вращательное движение кривошипно-шатунного механизма с дальнейшей передачей вращения на трансмиссию.

Основная работа по преобразованию энергии происходит внутри цилиндро-поршневой группы, а именно в цилиндрах.

Преобразование энергии зависит от многих факторов, среди которых степень сжатия двигателя и компрессия. Особенно эти критерии важны в дизельных силовых установках, поскольку воспламенение горючей смеси в цилиндрах таких моторов происходит в результате ее нагрева за счет сжатия.

Понятие степени сжатия

Зачастую эти понятия путают между собой или объединяют в один термин. В действительности это два разных термина, и характеризуются они по-разному.

Сначала разберем все о степени сжатия дизельного мотора.

Соотношение объема цилиндра двигателя в момент нахождения поршня в нижней мертвой точке (НМТ) к объему камеры сгорания в момент, когда поршень достигает верхней мертвой точки и есть степень сжатия двигателя.

Данное соотношение указывает на разницу давления, возникающую в цилиндре двигателя в тот момент, когда в цилиндр поступает топливо.

В технической документации, идущей вместе с дизельной силовой установкой, степень сжатия указывается в виде математического соотношения, к примеру — 18:1.

Для дизельного агрегата самой оптимальной степень сжатия варьируется в диапазоне от 18:1 до 22:1. Именно при таких показателях у этого двигателя достигаются максимальные показатели эффективности.

Как все работает

У дизельного мотора при такте сжатия, когда поршень движется к ВМТ, объем в цилиндре быстро сокращается. В этот момент в камере сгорания находиться только воздух, он-то и сжимается, данный процесс называется тактом сжатия.

При подходе поршня к ВМТ, воздух сжимается на указанную в документации степень сжатия, в камеру сгорания под давлением подается топливо.

Смесь из топлива и воздуха из-за воздействия на нее высокого давления воспламеняется, значительно увеличивая давление внутри камеры, поршень в этот момент проходит ВМТ.

Образовавшееся в результате сгорания топливовоздушной смеси высокое давление начинает давить на днище поршня, заставляя его двигаться к НМТ.

Посредством шатуна поступательное движение поршня преобразовывается во вращательное движение колен. вала.

В данном случае давление, возникшее в результате воспламенения смеси, заставляет двигаться поршень к НМТ называется рабочим ходом. Рабочий ход является одним из тактов работы цилиндро-поршневой группы.

При такте сжатия как раз и важна степень сжатия. Чем она выше, тем более легче воспламениться горючая смесь и в более полной мере она сгорит, обеспечив большее давление.

При хорошем показателе степени сжатия дизельный мотор будет обеспечивать больший выход мощности при меньшем количестве сгораемого топлива.

Больше по теме — Разная компрессия в цилиндрах, что делать, последствия.

Однако у дизельных силовых установок не зря имеется диапазон степени сжатия, за который выходить не рекомендуется.

Степень сжатия меньше 18:1 приводит к снижению мощностного показателя установки, при этом потребление топлива увеличивается.

Но и чрезмерная степень сжатия у мотора тоже сказывается нехорошо на двигателе, особенно дизельном. За счет увеличенных нагрузок, которые испытывают цилиндропоршневая группа, их ресурс очень быстро сокращается.

Увеличение сверх нормы степени сжатия может привести к прогоранию поршня, изгибу шатуна.

В некоторых случаях увеличение данного показателя приводит к взрыву силовой установки без возможности последующего восстановления.

ВАЖНО ЗНАТЬ: Степень сжатия у водородных двигателей значительно больше.

Возможность замера степени сжатия

Проверить степень сжатия дизельного агрегата в гаражных условиях практически невозможно. Поскольку нужно проводить некоторые замеры, которые сделать очень сложно.

Одним из таких замеров является выяснение объема в цилиндре при нахождении поршня в ВМТ.

Далее нужно знать некоторые параметры силовой установки, часть из которых можно узнать из тех. документации, но некоторые узнать довольно сложно.

Для вычисления степени сжатия потребуется знать объем камеры сгорания, поскольку между блоком цилиндров находиться прокладка, то нужно знать ее толщину и диаметр поршневого отверстия в ней, ход поршня и диаметр цилиндра.

Имея все эти данные, а также произведя замеры объема в цилиндре, можно математическим путем провести вычисления степени сжатия.

Способы повышения показателя

Замерить степень сжатия на дизельном двигателе сложно, а вот изменить данный показатель в лучшую сторону – можно.

Есть несколько способов увеличения показателей степени сжатия на дизельном агрегате.

Уменьшаем камеру сгорания двигателя.

Самым простым способом увеличения данного показателя является уменьшение камеры сгорания.

Поскольку степень сжатия – это соотношение объема цилиндра к объему камеры сгорания, то изменив объем одного можно поменять и сам показатель соотношения.

Уменьшить объем камеры сгорания можно несколькими путями.

Первое, что можно сделать – это заменить прокладку между блоком и головкой двигателя на более тонкую, за счет этого и измениться объем камеры сгорания.

Дополнительно можно провести торцевание головки блока цилиндров. В этом случае с головки блока снимается слой металла, из-за чего и уменьшается камера сгорания.

Читайте также:

Использование турбированного нагнетателя.

Вторым способом изменения данного показателя является увеличение давления в камере сгорания.

Применение такого устройства, как турбинный нагнетатель, он же турбонаддув, позволяет увеличить степень сжатия.

В дизельных силовых установках, не имеющих данного устройства, воздух, требуемый для создания горючей смеси, подается за счет разрежения в цилиндре, возникающего при такте впуска.

При такой подаче воздуха в цилиндры высокое давление на такте сжатия обеспечить в полной мере невозможно, поскольку количество воздуха получатся ограниченным.

При использовании нагнетателя воздух в цилиндры подается принудительно. Это обеспечивает подачу большего количества воздуха, и как следствие большего давления в цилиндре при такте сжатия.

ЧИТАЙТЕ ПО ТЕМЕ: Турбированный или атмосферный двигатель, что лучше.

Интеркулер.

Часто на дизельных моторах, помимо нагнетателя применяется еще одно устройство – интеркулер. Он также позволяет увеличить давление в цилиндре, но по несколько иному принципу, чем нагнетатель.

В задачу интеркулера входит охлаждение воздуха перед подачей его в цилиндры. Приводит это к тому, что при охлаждении плотность воздуха увеличивается, а значит и давление в цилиндре будет выше.

Это основная информация, что касается степени сжатия. Перейдем к компрессии.

Понятие компрессии

Компрессия – это показатель давления в цилиндрах двигателя. Измеряться данный показатель может в нескольких величинах – кг/см кв., Барах, Атмосферах, Паскалях.

Особое внимание заслуживает компрессия дизельного двигателя, так как данный показатель очень важен в дизельных моторах. У дизеля компрессия должна быть порядка 22 Атм., хотя на разных двигателях может быть и больше, при этом значительно.

Высокая компрессия в цилиндрах дизеля должна обеспечиваться потому, что воспламенение горючей смеси производится именно из-за высокого давления.

Если данный показатель на дизеле будет значительно меньше нормы, запуск мотора – затруднителен или невозможен.

Компрессия дизельного двигателя в цилиндре достигается путем сжатия воздуха поршнем при такте сжатия. Но полной герметичности внутри цилиндра добиться просто невозможно, всегда будет утечка воздуха.

Воздух частично может прорываться через изношенные компрессионный кольца, когда они уже не могут обеспечить должное прилегание к цилиндру, часть воздушной массы может выходить из цилиндра через неплотное прилегание клапанов к седлам.

Если говорить в общем, то показатель компрессии указывает на состояние двигателя.

Сильное несоответствие компрессии двигателя от заданных норм всегда указывает на сильный износ механизмов силовой установки. Поэтому измерение компрессии входит в комплекс диагностических работ двигателя.

Как замерить компрессию

В отличие от степени сжатия провести замеры компрессии двигателя не особо сложно. Для проведения данных работ достаточно иметь компессометр или компрессограф.

Принцип действия этих двух приборов одинаков, разница лишь в выводе информации.

У компрессометра значение давления указывается на шкале манометра.

У компрессографа же информация о давлении в цилиндре заносится на какой-либо носитель информации или же просто на бумагу.

Последовательность проверки компрессии в дизельном двигателе такова:

  1. С одного цилиндра снимается форсунка, на ее место устанавливается прибор;
  2. Затем производится проворот коленвала стартером и записывается полученный результат;
  3. После проверяется компрессия во всех остальных цилиндрах;
  4. Затем значения, полученные во всех цилиндрах, сверяются.

У неизношенного двигателя компрессия должна соответствовать или хотя быть близкой к номинальному значению, указанному в документации. Разбежность в показателях на разных цилиндрах тоже должна быть одинаковой, допускается незначительные отличия.

От чего зависит компрессия

Как уже сказано, компрессия дизельного двигателя, и не только его, а всех силовых установок, зависит от состояния цилиндро-поршневой группы и газораспределительного механизма.

Но помимо этого компрессия двигателя еще и зависит от количества оборотов коленвала. Чем ниже его обороты, тем больше времени у воздуха, находящегося внутри цилиндра найти место, где он может выйти из нее.

Поэтому при замере компрессии важно проследить о том, чтобы стартер обеспечил хотя бы минимальных 200-250 оборотов коленчатого вала в минуту. Иначе показания компрессометра не будут соответствовать реальному значению этого показателя.

Это конечно, не все факторы, влияющие на компрессию, но перечисленные являются одними из основных.

Особенности запуска дизельного двигателя

Но высокая компрессия дизельного двигателя, которой обеспечивается работоспособность силовой установки, играет не на руку легкости пуска.

Конечно, если двигатель хорошо прогреется, стартеру не составит труда обеспечить должные обороты коленвала, и как следствие должное давление в камере сгорания и запуск силовой установки.

У холодного же мотора появляется несколько дополнительных факторов, усложняющих запуск. Одним из таких факторов является повышенное трение между узлами и механизмами у холодного двигателя, поскольку масляной прослойки между ними нет.

А если к данному фактору у дизельной установки добавить еще и слабую компрессию, из-за которой воспламенение рабочей смеси затруднительно, поскольку давления в камере сгорания недостаточно, то пуск мотора очень затруднителен.

Поэтому чем ниже температура и слабее компрессия дизельного двигателя, тем меньше шансов его запустить.

И это еще не рассмотрена такая особенность дизельного топлива, как парафинированние его при низких температурах.

Степень сжатия

Степень сжатия в теории – это соотношение объема в пространстве над рабочим поршнем в момент, когда он проходит нижнюю мертвую точку, к объему в камере над поршнем в момент прохождения верхней мертвой точки. Это определение выражает разницу давления в самой камере сгорания в момент, когда происходит впрыск топлива в цилиндр.

В повседневной жизни часто путают степень сжатия с другим понятием, а именно с компрессией дизельного двигателя, однако на практике это два разных термина. Компрессия – это наибольшее давление создаваемое поршнем в цилиндре на момент его прохождения от нижней мертвой точки к верхней. Эту величину измеряют в атмосферах.

Степень сжатия измеряют математическим соотношением, к примеру, 19:1. Для дизельных двигателей наилучшим считается соотношение в рамках от 18 до 22 к 1. При такой степени сжатия сердце автомобиля будет работать наиболее эффективно. Использование топлива связано напрямую со степенью сжатия. Чем больше давление достигается в камере и больше сжатие, тем экономичней будет расход топлива, при этом полученная мощность может увеличиваться.

Степень сжатия на практике – как это происходит?

Cгорание топливной смеси в двигателе происходит при взаимодействии смешанных паров топлива и воздуха. При возгорании смеси происходит ее расширение, в результате чего увеличивается давление в камере. Коленчатый вал при этом выполняет обороты, соответственно двигатель выполняет один такт полезной работы. В наше время уже практически не выпускаются дизельные двигатели с низкой степенью сжатия — все стремятся к более экономичным и высокооборотистым двигателям с большей степенью сжатия. Увеличения степени сжатия можно добиться за счет уменьшения камеры сгорания дизельного двигателя. Но при таких изменениях инженерам на заводах приходятся искать компромиссное решение, потому что нужно сохранить давление в камере, а также уменьшить объем сжигания топлива. Одним из способов увеличения сжатия является расточка блоков головки цилиндра – степень сжатия при этом увеличивается, а объем сгорания топлива в камере уменьшается. При этом цилиндр сохраняет свой рабочий объем и объем двигателя не меняется.

Степень сжатия двигателя, формула, повышение, бензин

Всем известно, что в бензиновых поршневых двигателях внутреннего сгорания топливовоздушная смесь перед воспламенением сжимается. Аналогичный такт работы дизелей отличаются лишь тем, что сжимается воздух без топлива. Одной из важнейших характеристик обоих ДВС является степень сжатия. Она показывает, во сколько раз изменяется объем пространства над днищем поршня при прохождении его от нижней мертвой точки до верхней.

Иногда этот показатель путают с компрессией, несмотря на то что разница между ними огромна. Ведь упомянутые выше характеристики, хоть и связаны между собой, по сути, совершенно различны. На что указывает даже их размерность. Степень сжатия – это соотношение, например, 10:1 или просто 10 и не имеет единиц измерения. То есть измеряется в «разах». Компрессия же показывает максимальное давление смеси в цилиндре перед воспламенением и измеряется в кг/см2. Так, компрессия ДВС, имеющего степень сжатия 10:1, должна быть не более 15,8 кг/см2. Сказать, что такое степень сжатия, можно и иначе. Это отношение объема над поршнем, находящимся в нижней мертвой точке к объему камеры сгорания. Камерой сгорания называется пространство над поршнем, достигшим верхней мертвой точки.

Расчет коэффициента сжатия

Вычислить степень сжатия ДВС можно, если выполнить расчет по формуле ξ = (Vр + Vс)/ Vс; где Vр – рабочий объем цилиндра, Vс – объем камеры сгорания. Из формулы видно, что степень сжатия можно сделать больше, уменьшив, объем камеры сгорания. Или увеличив, рабочий объем цилиндра, не изменяя камеры сгорания. Vр намного больше чем Vс. Поэтому можно считать, что ξ прямо пропорционален рабочему объему и находится в обратной зависимости от объема камеры сгорания.

Рабочий объем цилиндра можно посчитать, зная диаметр цилиндра – D и ход поршня – S. Формула для его вычисления выглядит так: Vр = (π*D2/4)* S.

Объем камеры сгорания из-за ее сложной формы обычно не вычисляют, а измеряют. Сделать это можно залив в нее жидкость. Определить объем, поместившийся в камеру жидкости, можно при помощи мерной посуды или весов. Для взвешивания удобно использовать воду, так как ее удельный вес 1г на см3. Значит, ее вес в граммах покажет и объем в куб. см.

Влияние коэффициента сжатия на характеристики мотора

Чем выше степень сжатия, тем больше компрессия ДВС и его мощность (при прочих равных условиях). Повышая степень сжатия, мы также способствуем увеличению КПД двигателя за счет снижения удельного расхода топлива. Степень сжатия ДВС, определяет октановое число используемого для работы мотора бензина. Так, низкооктановое топливо станет причиной детонации мотора с большим значением этого коэффициента. Чрезмерно высокое октановое число топлива не позволит силовому агрегату, компрессия которого невысока, развивать полную мощность.

Исходные данные

Октановое число топлива, используемого для бензиновых двигателей с различной степенью сжатия.

  • 7,0–7,5 октановое число 72–76.
  • 7,5–8,5 октановое число 76–85.
  • 5,5–7 октановое число 66–72.
  • 10:1 октановое число 92.
  • От 10,5 до 12,5 октановое число 95.
  • От 12 до 14,5 октановое число 98.

Выравнивание плоскости сопряжения головки с блоком срезанием слоя металла приводит к уменьшению камеры сгорания мотора. От этого показатель сжатия увеличивается в среднем на 0,1 при уменьшении толщины головки на 0,25 мм. Имея в своем распоряжении эти данные, можно определить, не превысит ли он после ремонта головки блока допустимые пределы. И не следует ли принять меры для его снижения. Опыт показывает, что при удалении слоя менее 0,3 мм последствия можно не компенсировать.

Для чего бывает нужно изменить коэффициент сжатия

Необходимость изменения этого параметра ДВС возникает довольно редко. Можно перечислить всего несколько причин, побуждающих сделать такое.

  1. Форсирование двигателя.
  2. Желание приспособить мотор для работы на бензине с другим октановым числом. Было время, когда газовое оборудование для авто не встречалось в продаже. Не было и газа на заправках. Поэтому советские автовладельцы часто переделывали двигатели для работы на более дешевом низкооктановом бензине.
  3. Неудачный ремонт мотора, для ликвидации последствий которого требуется корректировка коэффициента сжатия. К примеру, фрезеровка головки блока после слишком сильной тепловой деформации. Когда выровнять сопрягаемую с блоком цилиндров поверхность удается ценой снятия слоя металла чрезмерно большой толщины. От этого значение коэффициента увеличивается столь сильно, что работа на бензине, для которого был рассчитан мотор, становится невозможной.

Как можно изменить показатель сжатия

Методы увеличения:

  • Расточка цилиндров и установка поршней большего размера.
  • Уменьшение объема камер сгорания. Выполняется за счет удаления слоя металла со стороны плоскости сопряжения головки с блоком. Эту операцию из-за мягкости алюминия лучше делать на фрезерном или на строгальном станке. Шлифовальный станок использовать не следует, так как его камень будет постоянно забиваться пластичным металлом.

Способы снижения:

  • Снятие слоя металла с днища поршня (делается это обычно на токарном станке).
  • Установка между головкой и блоком цилиндров дюралюминиевой проставки между двумя прокладками.

Взаимосвязь коэффициента сжатия и компрессии

Зная значение коэффициента сжатия, можно рассчитать какая компрессия должна быть в двигателе. Однако, обратная оценка не будет соответствовать действительности. Так как компрессия зависит еще и от изношенности деталей цилиндр-поршневой группы и газораспределительного механизма. Низкая компрессия двигателя часто говорит о значительном износе мотора и необходимости его ремонта, а не о малом коэффициенте сжатия.

Турбированные моторы

В цилиндры двигателя, имеющего турбонаддув, воздух нагнетается компрессором под давлением несколько больше атмосферного. Значит, для определения показателя сжатия такого мотора нужно значение, которое вы получите в результате расчета по формуле, умножить на коэффициент турбокомпрессора. Бензиновые двигатели с турбонаддувом работают на топливе с октановым числом выше, чем у бензина, который потребляют такие же моторы без турбин, именно потому, что их коэффициент ξ больше.

Что такое компрессия и степень сжатия двигателя

О компрессии двигателя знают практически все автовладельцы. Увы, но до сих пор многие из них продолжают путать это понятие со степенью сжатия. Действительно, эти характеристики тесно связаны между собой, однако их ни в коем случае нельзя сравнивать, поскольку каждая из них играет собственную роль в работоспособности двигателя. Чем же отличается компрессия от степени сжатия, и что связывает эти два показателя? Рассмотрим всё по порядку.

Максимальная компрессия возникает в конце такта

Понятие компрессии

Чтобы наиболее подробно охарактеризовать значение компрессии, необязательно обращаться к справочникам и терминологии. Достаточно лишь запомнить то, что компрессия – это максимальное давление в цилиндре, возникающее в самом конце такта сжатия. Величина этого давления может измеряться в различных единицах, но наибольшее распространение получило измерение в атмосферах. Стоит сразу отметить, что компрессия не является постоянной величиной, как степень сжатия двигателя, и изменяется в меньшую сторону по мере его износа. Но об этом немного позже.

Что же касается величины оптимального давления в цилиндрах, то для определенной модели двигателя она индивидуальна и зависит от его объема. Чтобы иметь максимальное представление о разнице этих показателей, достаточно взглянуть на приведенную ниже таблицу:

Модель двигателя Объем Давление (атмосфер)
ЯМЗ 236 11,15 л 34―37
ЕВРО-4 11,76 л 33―39
Lexus ES300 (б/у) 3 л 15―16
ВАЗ 2101 1,6 л 10―13
Д240 4,75 л 25―29

Причины низкого давления

Как уже было упомянуто выше, показатель компрессии зависит от износа двигателя. В связи с этим могут возникать различные причины, из-за которых давление в цилиндре может значительно сократиться. К основным таким причинам можно отнести следующие:

  • механический износ поршневой системы. В этом случае на всех деталях, находящихся в непосредственном контакте между собой, возникают микроцарапины и выбоины. Происходит это в основном по причине использования некачественного топлива, после сгорания которого остается осадок, пагубно влияющий на стенки цилиндра и поршня;
  • залегание или заклинивание уплотнительных колец. Причина ― некачественный бензин. По мере накопления остатков гари кольца буквально приклеиваются к пазам на поршне и не могут должным образом разжиматься при нагреве, что и приводит к потере давления;
  • сколы. Поскольку любая составляющая поршневой системы имеет временной предел своей эксплуатации, рано или поздно наступает усталость металла, в результате которой от деталей начинают откалываться мелкие частицы, способные привести не только к потере давления, но и к серьезной поломке двигателя в целом.

Методы увеличения компрессии

Пожалуй, прежде чем задаваться вопросом, как увеличить компрессию двигателя, следует определить первопричину падения давления в цилиндре, и только после этого приступить к устранению неисправности. На сегодняшний день существует несколько способов решения этой проблемы, которые применяются в зависимости от того или иного случая. Начнем с самой распространенной причины снижения компрессии – с износа поршневой системы.

Урвоень компрессии зависит от износа поршневой системы

Поскольку проблема износа цилиндро-поршневой группы двигателя связана с неплотным прилеганием деталей друг к другу, решить эту проблему можно инновационными способами. На рынке можно найти большое разнообразие различных присадок, с помощью которых можно нарастить на изношенный участок металла необходимую толщину, которой вполне хватит для увеличения компрессии. Кроме того, некоторые материалы, из которых изготовлены такие присадки, способны удерживать в себе моторное масло, благодаря чему давление увеличивается еще больше. Однако такой метод следует использовать лишь тогда, когда вы точно уверены в причине неисправности. К примеру, использование присадок при залегании поршневых колец никак не повлияет на ситуацию или же вовсе её усугубит. Поэтому крайне важно провести тщательную диагностику перед ремонтом. О том, какая компрессия должна быть у модели вашего двигателя, можно прочитать в его технической документации. Исходя из этого, следует делать определенные выводы касательно возможных причин поломки.

Что касается заклинивания или «закоксованности» поршневых колец, то здесь используются иные методы. Можно сказать, что даже старые, но весьма эффективные. Увеличить компрессию в таком случае достаточно просто. Необходимо отвинтить свечи, залить в каждое отверстие около 100 грамм моторного масла и подождать около часа. Чистое масло размягчит накопленную гарь, и при следующем запуске двигателя она попросту выработается. Если вы знаете, какая должна быть компрессия двигателя вашего авто, то можно сравнить её с показателями после проведения этой процедуры, измерив величину манометром. Если изменений нет, то, вероятно, причина кроется в механическом повреждении, поэтому единственным выходом из ситуации станет посещение мастерской.

Определение степени сжатия

Мы уже определили, что компрессией является уровень давления в цилиндрах. А что же такое степень сжатия? На самом деле, все очень просто. Степень сжатия двигателя – это отношение рабочего объема всего цилиндра к объему камеры сгорания. Исходя из этого, следует сразу отметить, что эта величина постоянна для марки вашего двигателя, она не измеряется ни в каких единицах, поэтому сравнивать её с компрессией не имеет никакого смысла. Также этот параметр напрямую влияет на мощность двигателя. Чем он больше, тем выше давление над поршнем, и, соответственно, выше крутящий момент.

Замер степени компрессии

Более того, зная степень сжатия, можно легко определить, какая именно компрессия должна быть на вашем двигателе. Для этого необходимо этот параметр умножить на 1,4 атмосферы. Результат получится, конечно, приблизительным, однако, на него можно полагаться как на оптимальную приблизительную величину давления.

Чтобы узнать степень сжатия, достаточно выполнить три простых шага:

  1. Измерить рабочий объем цилиндра. Для этого необходимо разделить его общий литраж на количество цилиндров. Например, если ваш четырехцилиндровый двигатель имеет размер в 1100 кубов, то рабочий объем будет равен 275 см3.
  2. Измерить размер камеры сгорания. Эту процедуру необходимо выполнять, когда поршень находится в верхней метровой точке. После этого можно воспользоваться обычным шприцем, в который набрано моторное масло. Зафиксировав количество вылитого масла, вы получите необходимый показатель.
  3. Разделить первый результат на второй. Полученное число и будет степенью сжатия двигателя.

Итак, сделав определенные выводы, можно смело сказать, что компрессия двигателя и степень сжатия – это две абсолютно разные вещи. Зная эти базовые понятия, вам будет намного проще определить те или иные проблемы, связанные с цилиндро-поршневой системой любого мотора.

Означает ли более высокое сжатие больше мощности? Да, и вот почему.

Увеличит ли степень сжатия выходную мощность вашего двигателя? Вы можете подозревать, что ответ «да», и будете правы, но вы можете не знать всех причин, почему. Когда целью является увеличение мощности мощных двигателей, есть несколько популярных способов добиться этого, включая добавление наддува с помощью турбонагнетателя, нагнетателя или закиси азота. Увеличение рабочего объема двигателя или увеличения его скорости (об / мин) также может привести к скачку мощности и также популярно, но увеличивает степень сжатия — т.е.е. уменьшение объема камеры сгорания — наверное, наименее понятный метод из всех. В конце концов, как сделать что-нибудь в двигателе меньшего размера , чтобы увеличить его мощность ?!

Что такое сжатие?

Просмотреть все 7 фотографий

Возможно, мы покрываем землю, которая для многих хорошо вытоптана, но степень статического сжатия двигателя понять просто: это весь объем цилиндра над компрессионным кольцом в нижней мертвой точке (НМТ), когда по сравнению с объемом над компрессионным кольцом в верхней мертвой точке (ВМТ).Чтобы узнать, как вычислить степень статического сжатия, щелкните здесь.

В четырехтактном двигателе внутреннего сгорания вся работа выполняется на рабочем такте. Остается три других хода (впуск, сжатие и выпуск), которые должны существовать, но ничего не добавляют к выходной мощности. Фактически, они стоят энергии — очень много. Четырехтактные двигатели внутреннего сгорания общеизвестно неэффективны, 20 процентов считаются святым Граалем, но большинство из них находятся в подростковом возрасте. Это означает, что есть огромный потенциал повышения эффективности, и именно по этой причине многие силовые установки с высокой степенью сжатия последних моделей, такие как Gen V GM, Ford Coyote и Gen III Hemi, выглядят так хорошо по сравнению со своими предшественниками.

Power Stroke Dynamics

Просмотреть все 7 фотографий

Представьте на мгновение, что мы рассматриваем Power Stroke Dynamics как неограниченное единичное событие, подобное выстрелу из винтовки. В лучшем случае наша пуля (поршень) имеет только казенную полость, в которой находится порох в оболочке в качестве камеры сгорания, и всю длину ствола в качестве цилиндра (стреловидный объем). Изменение исходного положения пули от порохового заряда на место дальше по стволу означает, что у расширяющихся газов меньше расстояния, чтобы воздействовать на пулю до того, как она выйдет.

Если вы перевернете концепцию сжатия с ног на голову и подумаете о нем как о событии расширения, вы получите сжатие в обратном направлении — степень расширения. Это имеет больше смысла, потому что именно расширение, а не сжатие, создает силу, от которой мы получаем энергию. Итак, глядя на нашу аналогию с винтовкой, мы имеем ту же длину и диаметр ствола, ту же пулю (поршень), тот же заряд (воздух и топливо), только мы запускаем пулю дальше по стволу. Чем дальше по стволу начинается пуля, тем меньшую расширяющую силу газ может оказать на пулю.Для наших целей эта сила представляет крутящий момент двигателя, в то время как начальная точка пули аналогична динамической степени сжатия двигателя в данном рабочем состоянии.

Статическое и динамическое сжатие

Посмотреть все 7 фотографий

Степень статического сжатия (иногда называемая степенью механического сжатия) — удобный справочник, который производители двигателей используют для создания и описания двигателей, но никакие два двигателя с одинаковым CR не являются действительно одинаково, потому что действительно важна степень динамического сжатия.По этой причине застревание на статических степенях сжатия — тупик для большинства вещей, помимо игры в тривиальную автомобильную погоню. Цилиндр с объемом 100 куб. См будет улавливать 100 куб. См воздуха и топлива, закрыв впускной клапан на НМТ, но только 75 куб. Поскольку количество воздуха и топлива, захваченных в камере сгорания, действительно имеет значение для выработки энергии, из двух наших гипотетических двигателей объемом 100 куб. оба двигателя имеют одинаковый рабочий объем.

Где «динамическая» часть динамической степени сжатия?

Наш предыдущий абзац не проливает много света на то, почему это называется «динамическим сжатием», пока мы не рассмотрим, как двигатель работает в различных условиях. Даже в двигателях с фиксированными фазами газораспределения (без VVT) эффективная степень сжатия изменяется при изменении частоты вращения двигателя и нагрузки. Короче говоря, если он изменяет количество заряда в камере сгорания от цикла к циклу, он меняет степень расширения и, следовательно, его мощность.Настройка индукции, частота вращения двигателя, продувка выхлопных газов и положение дроссельной заслонки изменяют динамическое сжатие от момента к моменту. Таким образом, статическое сжатие на самом деле не столько показатель удельной мощности двигателя, сколько критерий для расчета того, что будет дальше!

Стоит ли повышать коэффициент статического сжатия?

Посмотреть все 7 фотографий В недавнем динамометрическом тесте мы проверили производительность стандартного литья LS «317» объемом 70 куб. См (слева), сравнив его с литым корпусом меньшего размера 65 куб. точка сжатия.

При обсуждении степеней сжатия, которые обычно относятся к автомобильной сфере — от 8: 1 до 15: 1, — величина мощности, которую вы можете ожидать, будет варьироваться от 2 до 4 процентов на каждую точку полученного статического сжатия. (Мы отметим, что это улучшение, которое вы получили бы только с компрессией, а не с оптимизацией фаз газораспределения.) Три процента могут показаться не такими уж большими по сравнению с тем, что вы получили бы, добавив турбокомпрессор, закись азота или даже кулачок, но все имеет значение. Более того, повышение степени сжатия на величину, достаточно высокую, чтобы почувствовать разницу, может быть столь же простым, как обработка блока или головок цилиндров на несколько тысячных долей во время следующего ремонта, так почему бы и нет? Подробнее об этом чуть позже.

Посмотреть все 7 фотографий Увеличение компрессии на этом 6-литровом LS стоило 15 л.с., и все, что мы сделали, это поменяли большие камеры сгорания на меньшие.

Недавно мы провели динамометрический тест типичного 6-литрового Gen III LS (LY6) с горячим уличным кулачком. Со штатными камерами сгорания объемом 70 куб. См. Максимальная мощность составила около 490 л.с. Просто заменив стандартные литые головки цилиндров «317» с камерой 70 куб. См на стандартные литые головки «243» с меньшей камерой сгорания объемом 65 куб. См, мы увеличили мощность до 505 л.с., то есть на 15 л.с. (около 3 процентов).

А как насчет октанового числа топлива?

Посмотреть все 7 фотографий Если вы увеличите компрессию, вы окажетесь на крючке, если будете заправлять двигатель топливом с достаточно высоким октановым числом, чтобы предотвратить детонацию, разрушающую двигатель. Однако усовершенствования головок блока цилиндров и другие технологии в последние годы значительно смягчили выдувание.

Есть один ограничивающий фактор, который может привести к резкому прекращению вашего плана по увеличению сжатия — октановое число топлива. Октан — это описание склонности топлива к воспламенению при определенных условиях испытаний, которые учитывают степень сжатия, частоту вращения, нагрузку, температуру охлаждающей жидкости, температуру воздуха на впуске, влажность и множество других переменных.Более высокое октановое число означает, что топливо может сопротивляться самовоспламенению при более высоком давлении и температуре, чем топливо с более низким октановым числом.

При прочих равных условиях двигатели с более высокой степенью сжатия требуют более высокого октанового числа топлива. Это связано с тем, что топливо с более низким октановым числом может начать воспламеняться до возникновения искры через систему зажигания, состояние, известное как детонация или самовоспламенение. Когда это происходит, ранний фронт пламени создает пиковое давление в камере до того, как поршень достигает ВМТ.Этот скачок давления усугубляется тем, что он ограничивается все меньшим пространством, поскольку поршень продолжает свой неумолимый марш к ВМТ. Детонация почти всегда является катастрофической для мощных двигателей, ее следует избегать любой ценой — это все равно, что ударять по поршням молотком и плазменным резаком одновременно.

По этой причине работа с более высокой степенью сжатия может вызвать повреждение двигателя, но это постепенно меняется. Усовершенствования таких вещей, как металлургия, покрытия и вычислительная динамика потока, означают, что у инженеров и производителей двигателей есть несколько инструментов, которые можно использовать против разрушительной детонации.Там, где когда-то было табу работать 11: 1 или даже 10: 1 на улице с помпой, мы обнаружили, что хорошо подобранная комбинация (головки, кулачок, впуск и т. Д.) Может раздвинуть границы приемлемого сжатия с закачивать газовую скважину в диапазон 11: 1 плюс с небольшими уступками в производительности или управляемости. Как никогда раньше, сейчас самое время увеличить степень сжатия!

Особая благодарность Дэвиду Визарду и Джону Макбрайду

Просмотреть все 7 фотографий

Что такое степень сжатия в бензиновых и дизельных двигателях?

Что такое степень сжатия?

Коэффициент сжатия

— одна из основных характеристик двигателя внутреннего сгорания.Это отношение объема над поршнем, когда он находится в самом нижнем положении (НМТ), к объему над поршнем, когда он находится в самом верхнем положении (ВМТ). Он указывает на степень сжатия топливовоздушной смеси в двигателе.

Рисунок 1 — Простая диаграмма камеры сгорания и степени сжатия

Это отношение объема камеры сгорания от ее наибольшего к наименьшему объему. Это соотношение между общим объемом цилиндра и камеры сгорания, когда поршень находится в НМТ (нижней мертвой точке), к объему одной только камеры сгорания, когда поршень находится в ВМТ (верхней мертвой точке).Это соотношение является одним из основных требований для всех двигателей внутреннего сгорания.

В рабочем состоянии:

Поскольку бензин очень летуч, «степень сжатия» для бензиновых двигателей обычно ниже. Таким образом, он варьируется от 10: 1 до 14: 1. Бензиновый двигатель сжимает воздух и топливо в соотношении от 10: 1 до 14: 1. Бензиновый двигатель смешивает бензин с воздухом и сжимает эту смесь в камере сгорания. Лучшее смешивание воздуха и топлива друг с другом делает его однородным.Затем электрическая свеча зажигания воспламеняет топливно-сжатую смесь искрой. Таким образом, топливо полностью и мгновенно сгорает.

Степень сжатия

В дизельных двигателях «Степень сжатия» варьируется от 18: 1 до 23: 1, что зависит от конструкции и конструкции двигателя. В бензиновых двигателях используется метод искрового зажигания. Однако в технологиях дизельных двигателей, таких как «Direct Injection», «InDirect Injection» и «Common-Rail Direct Injection», используется метод воспламенения от сжатия .Однако степень сжатия остается почти одинаковой как для бензинового, так и для дизельного двигателя, соответственно, независимо от объема / рабочего объема двигателя.

Преимущества более высокой степени сжатия:

Чем выше степень сжатия, тем лучше тепловой КПД двигателя. Таким образом, двигатель может извлечь больше механической энергии из заданной массы топливовоздушной смеси. В этом контексте дизельные двигатели имеют более высокую топливную эффективность для данного количества топлива, чем бензиновые двигатели того же размера.

Это означает, что скажем; Вы сравниваете обычные бензиновые и дизельные двигатели с одинаковым объемом двигателя 1,0 л. Тогда в реальном мире дизельный двигатель объемом 1,0 л будет потреблять меньше топлива, чем бензиновый двигатель объемом 1,0 л. Другими словами, автомобиль с дизельным двигателем 1,0 л будет иметь больший пробег по сравнению с автомобилем с бензиновым двигателем 1,0 л при аналогичных условиях движения.

Как снизить степень сжатия двигателей

«Уменьшить степень сжатия?»

Какая степень сжатия? Это количество воздуха, которое двигатель может выдавить, чтобы подготовиться к взрывной фазе сгорания.

Например, степень сжатия 10: 1 просто означает, что 10 единиц воздуха будут сжаты в пространстве всего 1 единицы.

Степень сжатия (CR) играет большую роль в том, насколько хорошо работает двигатель.

Проблема детонации (когда воздушно-топливная смесь преждевременно воспламеняется) в значительной степени регулируется степенью сжатия.

NB, вы можете использовать топливо с более высоким октановым числом, чтобы уменьшить проблемы с детонацией, другим вариантом может быть впрыск воды, но реальное инженерное решение — просто снизить степень сжатия.

Как рассчитать степень сжатия двигателя.

Для расчета степени сжатия вы просто делите рабочий объем (который не изменится, если двигатель не будет расточен и / или коленчатый вал заменен на один с более длинным ходом) на объем камеры сгорания.

Степень сжатия рассчитывается путем деления объема над поршнем, когда он находится в ВМТ, на объем над поршнем, когда он находится в НМТ.

Если вы хотите использовать принудительную индукцию (например, добавляя турбо, нагнетатель или воздушный компрессор), вы обнаружите, что количество наддува, которое вы можете добавить, ограничено пределами, налагаемыми степенью сжатия.( * см. Примечание ниже)

Чем ниже степень сжатия, тем больше погрешность, с которой вам придется играть, что значительно упрощает настройку.

Если у вас высокая степень сжатия, не так много места для ошибки, а детонация и детонация — настоящие проблемы.

Современные двигатели, использующие турбонагнетатели и высокую степень сжатия (наддув 15 фунтов на квадратный дюйм или более при степени сжатия 10: 1), обычно проектируются вокруг системы прямого впрыска топлива в цилиндр, где топливо может быть добавлено непосредственно перед зажиганием, поэтому существует риск преждевременного детонация снижена.

Эта инновация пришла из мира дизельных двигателей, которые работают с очень высокой степенью сжатия.)

Лучшие способы снижения степени сжатия двигателя.

Пока вы уменьшаете степень сжатия, имеет смысл усилить внутренние детали двигателя.

Это имеет еще больше смысла, если вы используете принудительную индукцию для увеличения мощности вашего двигателя.

Для расчета степени сжатия

Удобная формула, которую следует иметь в виду: —
CR = (рабочий объем + объем камеры сгорания в ВМТ) / объем камеры сгорания в ВМТ

Разбивая это дальше, вам необходимо знать следующее для точного CR.

Для расчета рабочего объема.

Возьмите (диаметр цилиндра / 2) 2 x π x ход

Определение объема прокладки

Отверстие + Отверстие x толщина прокладки

Расчет зазора между поршнем и палубой

Диаметр отверстия + (Диаметр отверстия × расстояние между поршнем и декой в ​​ВМТ)

Примечание: чтобы преобразовать кубические дюймы в см, просто умножьте их на 16,387 — убедитесь, что вы используете одну и ту же единицу измерения на протяжении всего расчета. Степень сжатия — это соотношение, поэтому, если вы использовали mm или cu, при условии, что вы едины во всем, вы получите окончательную степень сжатия.

Для расчета общего объема камеры сгорания

Сложите вместе объем камеры сгорания, прокладку поршня и зазор деки.

Если ВМТ поршня находится выше палубы, вы уменьшите зазор, если он ниже палубы, вы увеличите зазор.

Форма головки поршня также влияет на объем. Иногда производитель дает полную спецификацию объема головы, что намного проще, чем проводить замеры самостоятельно.Объем прокладки головки также должен быть указан в спецификациях производителя, но его можно измерить самостоятельно.

Каковы преимущества изменения степени сжатия?

* Не заблуждайтесь, думая, что степень сжатия определяет максимальное ускорение, которое вы можете безопасно запустить. Это только малая часть уравнения.

Самое важное — это ваша заправка, топливно-воздушная смесь и время зажигания — ключевые ингредиенты здесь.

Более низкая степень сжатия даст вам больше прав на ошибку и, в основном, позволит вам увеличить ускорение, чем вы могли бы в противном случае.

Имеет смысл позволить турбонагнетателю хорошо сжимать воздух и просто оставить двигатель, чтобы он сосредоточился на заключительной фазе сгорания и взрыва.

Несколько замечаний по поводу окончательной степени сжатия. Когда вы заменяете головку на своем двигателе, ее, как правило, необходимо снять, и это увеличивает степень сжатия, поэтому ее необходимо учитывать в ваших расчетах.

Толщина новой прокладки также будет немного больше, чем при затягивании головки, поэтому измерьте толщину прокладки по старой прокладке.

5 хороших способов уменьшить степень сжатия

  • Поршни низкой компрессии . Кажется, это правильный путь. Поршни намного короче обычных. Небольшой плюс в том, что они также часто легче, поэтому двигатель будет вращаться немного более свободно. Мы рекомендуем комбинировать поршни с низким уровнем сжатия с более коротким ходом, чтобы получить максимальную выгоду.

    Форма головки поршня также будет иметь отношение к степени сжатия, которое имеет место в двигателе.

    Это потребует разборки двигателя, и пока двигатель находится отдельно, вы можете с тем же успехом выполнить некоторые из других модов, перечисленных ниже.

  • Более короткие стержни и уменьшение хода . Более короткий ход существенно повлияет на степень сжатия.
    Комбинируя этот метод с поршнями с низкой степенью сжатия, можно начать думать о работе с очень высоким давлением наддува при добавлении турбонаддува.
    Кривошип также будет иметь некоторое влияние на ход двигателя, и в идеале кривошип, головки поршней и штоки должны быть совмещены.

  • Работа с головкой , снова увеличивает объем цилиндра, но эффективность во многом зависит от того, как расположены впускные и выпускные клапаны, а также от того, сколько места у вас есть для работы. Снять головку относительно просто и действительно. не требует таких больших усилий, как другие моды для понижения компрессии. Однако для правильной работы с головкой и достижения желаемой степени сжатия требуется большое мастерство.
  • Более толстые прокладки головки блока цилиндров .Этот вариант немного сложен, но мы должны упомянуть о нем, поскольку многие люди используют более толстые прокладки для достижения более низкой степени сжатия. Мы также видели людей, использующих 2 прокладки (или более) для достижения более низкой степени сжатия! Использование нескольких прокладок, безусловно, не рекомендуется, так как это создает серьезные слабые места в двигателе.

    Более толстая прокладка немного снизит степень сжатия, вероятно, только на 0,1 или 0,2.

    Это, безусловно, самый простой метод уменьшения сжатия, но существует риск того, что вы более склонны к выходу из строя прокладки головки блока цилиндров, а выигрыш от более низкого сжатия будет минимальным.

  • Декомпрессионные пластины , по сути, являются продолжением головки и могут быть очень эффективны для уменьшения степени сжатия. Сторона блока требует обычного уплотнительного прокладки, но сторона головки обычно требует только не схватывающегося высокотемпературного герметика (в случае алюминия декомпрессионные пластины).

    Таблички могут быть изготовлены из различных металлов, и мы предлагаем вам поговорить со специалистом о ваших возможностях здесь.

    Декомпрессионные пластины могут преждевременно выйти из строя в приложениях с высоким наддувом, где задействованы высокие температуры.

    Многие считают это хорошим делом, так как заменить декомпрессионную пластину намного проще, чем заменить поршни и головки.

В большинстве случаев тюнеры выбирают множество этих опций в зависимости от желаемого диапазона крутящего момента и выходной мощности двигателя, который они создают.

Чтобы обсудить все аспекты настройки двигателя и модификации автомобиля, а также получить дополнительную информацию о снижении степени сжатия двигателя, присоединяйтесь к нашим дружественным международным автомобильным форумам.

ПОЖАЛУЙСТА, ПОМОГИТЕ: МНЕ НУЖНЫ ВАШИ ПОЖЕРТВОВАНИЯ, ЧТОБЫ ПОКРЫТЬ РАСХОДЫ НА РАБОТУ ЭТОГО САЙТА И ПОДДЕРЖАНИЕ ЕГО РАБОТЫ. Я не взимаю плату с за доступ к этому веб-сайту, и это экономит большинство читателей TorqueCars 100 долларов каждый год — , но мы НЕ ПРИБЫЛЬНЫ и даже не покрываем наши расходы. Чтобы мы продолжали работать, ПОЖАЛУЙСТА, Пожертвуйте здесь

Эта статья написана мной, Уэйнном Смитом, основателем TorqueCars, и я ценю ваши отзывы и предложения. Эта запись была находится в разделе «Модификации двигателя», «Тюнинг».Вы можете оставить отзыв ниже или присоединиться к нашему форуму, чтобы подробно обсудить эту статью и модификацию автомобиля с нашими участниками.

Если вам понравилась эта страница , поделитесь ею с друзьями, напишите ссылку на своем любимом форуме или используйте параметры закладок, чтобы сохранить ее в своем профиле в социальной сети.

Посетите наш новый канал YouTube, мы регулярно добавляем новый контент …

Обратная связь

Пожалуйста, используйте наш форум , если вы хотите задать вопрос о настройке , и обратите внимание, что мы не продаем запчасти или услуги, мы просто интернет-журнал.

Помогите нам улучшить, оставьте предложение или дайте чаевые

Степень сжатия | Tractor & Construction Plant Wiki

Информацию о степени сжатия при сжатии данных см. В Википедии: степень сжатия данных.
Эта статья требует дополнительных ссылок для проверки . Пожалуйста, помогите улучшить эту статью, добавив цитаты из надежных источников. Материал, не полученный от источника, может быть оспорен и удален. (май 2009 г.)

«Степень сжатия» двигателя внутреннего сгорания или двигателя внешнего сгорания — это величина, которая представляет собой отношение объема его камеры сгорания от наибольшей емкости к наименьшей. Это фундаментальная спецификация для многих распространенных двигателей внутреннего сгорания.

В поршневом двигателе это соотношение между объемом цилиндра и камеры сгорания, когда поршень находится в нижней части своего хода, и объемом камеры сгорания, когда поршень находится в верхней части своего хода. [1]

Изобразите цилиндр и его камеру сгорания с поршнем в нижней части его хода, содержащим 1000 см3 воздуха (900 см3 в цилиндре и 100 см3 в камере сгорания). Когда поршень переместился в верхнюю часть своего хода внутри цилиндра, а оставшийся объем внутри головки или камеры сгорания был уменьшен до 100 см3, тогда степень сжатия будет пропорционально описана как 1000: 100 или с частичным уменьшением. , степень сжатия 10: 1.

Желательна высокая степень сжатия, поскольку она позволяет двигателю извлекать больше механической энергии из заданной массы топливовоздушной смеси из-за его более высокого теплового КПД. Это происходит потому, что двигатели внутреннего сгорания являются тепловыми двигателями, и более высокий КПД создается, поскольку более высокие степени сжатия позволяют достичь той же температуры сгорания с меньшим количеством топлива, обеспечивая при этом более длительный цикл расширения, создавая большую выходную механическую мощность и снижая температуру выхлопных газов.

Однако при более высоких степенях сжатия бензиновые двигатели подвержены детонации, если используется топливо с более низким октановым числом, также известное как детонация. Это может снизить эффективность или повредить двигатель, если отсутствуют датчики детонации, замедляющие синхронизацию. Однако датчики детонации были требованием спецификации OBD-II, используемой в автомобилях 1996 модельного года и новее.

Дизельные двигатели, с другой стороны, работают по принципу воспламенения от сжатия, поэтому топливо, которое сопротивляется самовоспламенению, вызовет позднее воспламенение, что также приведет к детонации в двигателе.

Формула

Коэффициент рассчитывается по следующей формуле:

, где
= отверстие цилиндра (диаметр)
= длина хода поршня
= зазорный объем. Это объем камеры сгорания (включая прокладку головки). Это минимальный объем пространства в конце такта сжатия, то есть когда поршень достигает верхней мертвой точки (ВМТ). Из-за сложной формы этого пространства его обычно измеряют напрямую, а не рассчитывают.

Типичные степени сжатия

Бензиновый двигатель

Из-за детонации (детонации) в двигателе степень сжатия в бензиновом или бензиновом двигателе обычно не будет намного выше, чем 10: 1, хотя некоторые серийные автомобильные двигатели, построенные для высокопроизводительных двигателей с 1955 по 1972 год, имели такие же высокие степени сжатия. как 13,0: 1, что может безопасно работать на доступном в то время высокооктановом этилированном бензине.

Техника, используемая для предотвращения возникновения детонации, — это двигатель с сильным «завихрением», который заставляет всасываемый заряд совершать очень быстрое круговое вращение в цилиндре во время сжатия, что обеспечивает более быстрое и полное сгорание.В последнее время, с добавлением датчиков изменения фаз газораспределения и детонации для задержки опережения зажигания, стало возможным производить бензиновые двигатели со степенью сжатия более 11: 1, которые могут использовать топливо 87 (MON + RON) / 2 (октановое число).

В двигателях с датчиком «пинг» или «детонация» и электронным блоком управления CR может достигать 13: 1 (BMW K1200S 2005 года). В 1981 году Jaguar выпустил головку блока цилиндров, которая допускала сжатие до 14: 1; но довольствовался 12,5: 1 в серийных автомобилях. Конструкция головки блока цилиндров была известна как головка «May Fireball»; его разработал швейцарский инженер Майкл Мэй.

Mazda в 2012 году выпускает новые бензиновые двигатели под торговой маркой SkyActiv со степенью сжатия 14: 1, которые будут использоваться во всех автомобилях Mazda к 2015 году. [2] [3] [4]

Бензиновый / бензиновый двигатель с наддувом

В бензиновых двигателях с турбонаддувом или наддувом CR обычно изготавливается с соотношением 10,5: 1 или ниже. Это происходит из-за того, что турбокомпрессор / нагнетатель уже значительно сжал топливно-воздушную смесь перед тем, как она попадает в цилиндры.

Бензиновый / бензиновый двигатель для гонок

Двигатели для гонок на мотоциклах могут использовать степень сжатия до 14: 1, и нередко можно найти мотоциклы со степенью сжатия выше 12,0: 1, рассчитанные на топливо с октановым числом 86 или 87. Двигатели F1 приближаются к соотношению 17: 1 (что очень важно для максимизации объемной / топливной эффективности при 18000 об / мин).

Двигатели на этаноле и метаноле

Этанол и метанол могут иметь значительно более высокие степени сжатия, чем бензин.Гоночные двигатели, работающие на метаноле и этаноле, часто имеют коэффициент CR 14,5-16: 1.

Газовый двигатель

В двигателях, работающих исключительно на СНГ или СПГ, CR может быть выше из-за более высокого октанового числа этих топлив.

Дизельный двигатель

В дизельном двигателе с самовоспламенением электрическая свеча зажигания отсутствует; теплота сжатия повышает температуру смеси до точки самовоспламенения. CR обычно превышает 14: 1, а соотношение более 22: 1 является обычным явлением.Соответствующая степень сжатия зависит от конструкции головки блока цилиндров. Обычно это значение составляет от 14: 1 до 16: 1 для двигателей с прямым впрыском и от 18: 1 до 23: 1 для двигателей с непрямым впрыском.

Диагностика и диагностика

Измерение давления сжатия двигателя с помощью манометра, подключенного к отверстию свечи зажигания, дает представление о состоянии и качестве двигателя. Однако формулы для расчета степени сжатия на основе давления в цилиндре не существует.

Если дана номинальная степень сжатия двигателя, давление в цилиндре перед воспламенением можно оценить с помощью следующего соотношения:

где — давление в цилиндре в нижней мертвой точке, которое обычно составляет 1 атм, — это степень сжатия, а — удельная теплоемкость рабочей жидкости, которая составляет около 1,4 для воздуха и 1,3 для метановоздушной смеси. смесь.

Например, если двигатель, работающий на бензине, имеет степень сжатия 10: 1, давление в цилиндре в верхней мертвой точке равно

Однако эта цифра также будет зависеть от кулачка (т.е.е. клапана) ГРМ. Как правило, давление в цилиндре для обычных автомобильных конструкций должно составлять не менее 10 бар, или, по приблизительной оценке в фунтах на квадратный дюйм (psi), в 15-20 раз больше степени сжатия, или в этом случае от 150 до 200 psi, в зависимости от кулачок синхронизации. Специально построенные гоночные двигатели, стационарные двигатели и т. Д. Будут давать цифры за пределами этого диапазона.

Факторы, включающие позднее закрытие впускного клапана (относительно профилей распределительных валов, выходящих за пределы типичного диапазона серийных автомобилей, но не обязательно в области двигателей соревнований), могут привести к обманчиво заниженным показателям в этом тесте.Чрезмерный зазор в шатуне в сочетании с чрезвычайно высокой производительностью масляного насоса (редко, но не невозможно) может привести к образованию достаточного количества масла, чтобы покрыть стенки цилиндра достаточным количеством масла, чтобы облегчить разумное уплотнение поршневого кольца, искусственно давая обманчиво высокий показатель на двигателях с нарушенным кольцевым уплотнением.

Это действительно может быть использовано для некоторого небольшого преимущества. Если испытание на сжатие дает низкое значение, и было установлено, что это не связано с закрытием впускного клапана / характеристиками распределительного вала, то можно различить причину, связанную с проблемами уплотнения клапана / седла и кольцевым уплотнением, путем впрыскивания моторного масла в искру. отверстие плунжера в количестве, достаточном для распределения по днищу поршня и по окружности контакта верхнего кольца и, таким образом, для воздействия на упомянутое уплотнение.Если вскоре после этого будет проведено второе испытание на сжатие и новое показание будет намного выше, проблематичным будет кольцевое уплотнение, тогда как если наблюдаемое испытательное давление на сжатие останется низким, это будет уплотнение клапана (или, реже, прокладка головки, или прорыв поршня, или более редкое повреждение стенки цилиндра).

Если существует значительная (более 10%) разница между цилиндрами, это может указывать на то, что клапаны или прокладки головки цилиндров протекают, поршневые кольца изношены или что блок треснул.

Если есть подозрение на проблему, то более комплексный тест с использованием тестера утечки может определить местонахождение утечки.

Двигатели с переменной степенью сжатия (VCR)

Поскольку диаметр отверстия цилиндра, длина хода поршня и объем камеры сгорания почти всегда постоянны, степень сжатия для данного двигателя почти всегда постоянна, пока износ двигателя не сказывается.

Единственным исключением является экспериментальный двигатель Saab Variable Compression Engine (SVC). В этом двигателе, разработанном компанией Saab Automobile, используется технология, которая динамически изменяет объем камеры сгорания (V c ), что с помощью приведенного выше уравнения изменяет степень сжатия (CR).

Цикл двигателя Аткинсона был одной из первых попыток переменного сжатия. Поскольку степень сжатия — это соотношение между динамическим и статическим объемами камеры сгорания, метод цикла Аткинсона по увеличению длины рабочего хода по сравнению с тактом впуска в конечном итоге изменил степень сжатия на разных этапах цикла.

Степень динамического сжатия

Расчетная степень сжатия, как указано выше, предполагает, что цилиндр герметизирован в нижней части хода, и что сжатый объем является фактическим объемом.

Однако: закрытие впускного клапана (уплотнение цилиндра) всегда происходит после НМТ, что может привести к тому, что часть всасываемого заряда будет сжиматься назад из цилиндра поднимающимся поршнем на очень низких скоростях; сжимается только процент хода после закрытия впускного клапана. Настройка и продувка впускного отверстия могут позволить большей массе заряда (при давлении выше атмосферного) задерживаться в цилиндре, чем можно было бы предположить по статическому объему (эта «скорректированная» степень сжатия обычно называется «степенью динамического сжатия , »). .

Это соотношение выше при более консервативном (т.е. раньше, вскоре после НМТ) времени впускных кулачков и ниже при более радикальном (т.е. позже, намного позже НМТ) времени впускных кулачков, но всегда ниже, чем статическое или «номинальное» степень сжатия.

Фактическое положение поршня можно определить тригонометрическим методом, используя длину хода и длину шатуна (измеренную между центрами). Абсолютное давление в цилиндре является результатом показателя степени динамического сжатия.Этот показатель степени представляет собой политропное значение для отношения переменной теплоты воздуха и подобных газов при существующих температурах. Это компенсирует повышение температуры, вызванное сжатием, а также потерю тепла в цилиндре. В идеальных (адиабатических) условиях показатель степени будет 1,4, но используется более низкое значение, обычно от 1,2 до 1,3, поскольку количество потерянного тепла будет варьироваться между двигателями в зависимости от конструкции, размера и используемых материалов, но дает полезные результаты для в целях сравнения. Например, если степень статического сжатия составляет 10: 1, а степень динамического сжатия — 7.1,3 × атмосферное давление, или 13,7 бар. (× 14,7 фунтов на квадратный дюйм на уровне моря = 201,8 фунтов на квадратный дюйм. Давление, показанное на манометре, будет абсолютным давлением за вычетом атмосферного давления, или 187,1 фунтов на квадратный дюйм.)

Две поправки на динамическую степень сжатия влияют на давление в цилиндре в противоположных направлениях, но не в одинаковой степени. Двигатель с высокой статической степенью сжатия и поздним закрытием впускного клапана будет иметь DCR, аналогичный двигателю с более низким уровнем сжатия, но более ранним закрытием впускного клапана.

Кроме того, давление в цилиндре, развиваемое при работающем двигателе, будет выше, чем показанное при испытании на сжатие, по нескольким причинам.

  • Гораздо более высокая скорость поршня при работающем двигателе по сравнению с проворачиванием коленчатого вала позволяет меньше времени для выхода давления через поршневые кольца в картер.
  • работающий двигатель покрывает стенки цилиндра гораздо большим количеством масла, чем двигатель, который запускается на низких оборотах, что способствует уплотнению.
  • более высокая температура цилиндра создает более высокое давление при работе по сравнению со статическим тестом, даже если тест выполняется с двигателем, температура которого близка к рабочей.
  • Работающий двигатель не прекращает забирать воздух и топливо в цилиндр, когда поршень достигает НМТ; Смесь, которая устремляется в цилиндр во время движения вниз, развивает импульс и продолжается некоторое время после прекращения вакуума (в том же отношении, что быстрое открытие двери создает сквозняк, который продолжается после прекращения движения двери). Это называется уборкой мусора. Настройка впуска, конструкция головки блока цилиндров, фазы газораспределения и настройка выхлопа определяют, насколько эффективно двигатель работает.

Степень сжатия в зависимости от степени общего давления

Степень сжатия и общая степень сжатия взаимосвязаны следующим образом:

Степень сжатия 2: 1 3: 1 5: 1 10: 1 15: 1 20: 1 25: 1 35: 1
Степень сжатия 2,64: 1 4.66: 1 9,52: 1 25,12: 1 44.31: 1 66,29: 1 90,60: 1 145,11: 1

Причина этой разницы в том, что степень сжатия определяется через уменьшение объема:

,

, а степень сжатия определяется как увеличение давления:

.

При вычислении степени сжатия мы предполагаем, что выполняется адиабатическое сжатие (т.е. что сжимаемый газ не получает тепловую энергию и любое повышение температуры происходит исключительно из-за сжатия).Мы также предполагаем, что воздух — это идеальный газ. С этими двумя допущениями мы можем определить взаимосвязь между изменением объема и изменением давления следующим образом:

где — отношение удельной теплоты воздуха (приблизительно 1,4). Значения в таблице выше получены с использованием этой формулы. Обратите внимание, что в действительности соотношение удельных теплоемкостей изменяется с температурой и что будут происходить значительные отклонения от адиабатического поведения.

См. Также

  • Среднее эффективное давление
  • Общий коэффициент давлений — тесно связанный коэффициент для реактивных двигателей

Ссылки

Внешние ссылки


{[wikipedia}}

Что такое сжатие двигателя и как оно проверяется?

Любой двигатель, будь то бензиновый или дизельный, требует компрессии для работы.Процесс сжатия ограничивает и сжимает смесь воздуха и топлива в небольшом объеме в области цилиндра двигателя. Этот процесс сжимает все молекулы под очень высоким давлением. Поскольку у бензинового двигателя есть свеча зажигания, достаточно умеренного сжатия, требующего около 140-160 фунтов на квадратный дюйм (PSI). В зависимости от размера и области применения для некоторых двигателей может потребоваться более высокая степень сжатия, например 220 фунтов на квадратный дюйм. Производитель указывает точный коэффициент сжатия.Процесс сжатия топливовоздушной смеси и ее воспламенение — это то, что производит необходимую мощность для работы транспортного средства.

Если бензиновый двигатель сжимает топливовоздушную смесь до очень высокого значения, это приводит к преждевременному воспламенению или детонации. Это может быть очень разрушительным и вызвать повреждение внутренних частей двигателя. В случае дизельных двигателей свеча зажигания отсутствует, и сам процесс сжатия приводит к воспламенению дизельного топлива. В результате компрессия, требуемая в дизельном двигателе, очень высока, обычно около 350 фунтов на квадратный дюйм или более.Это делает дизельный двигатель намного тяжелее и громче по сравнению с бензиновым.

Когда следует проверять компрессию в автомобиле?

Вообще говоря, если ваш двигатель работает с перебоями или не производит достаточной мощности, вы должны подозревать компрессию. Технические специалисты и производители также считают, что каждый раз, когда выполняется настройка в рамках профилактического обслуживания, двигатель должен проходить испытание на компрессию. При испытании на сжатие внутренние неисправности двигателя, например, из-за неисправных клапанов, чрезмерного накопления углерода, изношенных поршневых колец, могут быть обнаружены намного раньше, чем они могут вызвать непоправимый ущерб.Зная об этих проблемах, владелец получает выгоду, так как он может принять осознанное решение, продать ли автомобиль или вложить средства в ремонт.

Как проверяется компрессия двигателя?

Транспортные средства требуют различных способов проверки компрессии. Дизельные двигатели требуют специального оборудования и сложной настройки. Тестировать бензиновый двигатель гораздо проще. Есть два основных способа проверки компрессии бензинового двигателя:

Метод 1: Процесс включает использование ручного ручного манометра

• Испытание должно проводиться только на правильно прогретом двигателе; холодный двигатель даст ошибочные результаты.Поэтому перед началом проверки убедитесь, что масло достаточно прогрелось.

• Отключите катушку или модуль зажигания.

• Снимайте по одной свече зажигания и вставляйте прибор для проверки компрессии в отверстие в этом цилиндре.

• Дайте двигателю достаточно воздуха, удерживая дроссельную заслонку в полностью открытом положении.

• Дайте двигателю непрерывно проворачиваться, по крайней мере, на пять-десять полных оборотов, так как это позволит получить точные показания на тестере компрессии.

• Запишите показания каждого цилиндра. Отсутствие проблемы не указывается, если какие-либо из показаний отличаются друг от друга в пределах или до 10%. Никаких дополнительных испытаний может потребоваться, и сжатие можно считать оптимальным.

• При отклонении более 10% для полной диагностики проблемы может потребоваться специализированное испытательное оборудование.

Метод 2: Этот метод основан на использовании электронного анализатора двигателя. Анализатор вызывает «закорочение» одного цилиндра за раз при работающем двигателе и вычисляет падение оборотов.После того, как все цилиндры были измерены, результаты показывают, какие цилиндры работают больше всего, а какие меньше всего. Цилиндры с более высоким сжатием работают тяжелее, чем цилиндры с более низким сжатием.

Для тех, кто тестирует сжатие самостоятельно, проще метод 1 или ручной тест сжатия.

Каковы последствия слишком низкого или слишком высокого сжатия?

Если вы обнаружили, что компрессия в вашем автомобиле слишком высокая или слишком низкая, рекомендуется проконсультироваться с профессиональным техником.Современные автомобили очень сложны, и ремонт, основанный на тестах, сделанных своими руками, может быть катастрофическим. Однако следующее дает общее представление о причинах отклонения компрессии от нормы:

Последовательное низкое сжатие во всех цилиндрах

Это может произойти из-за промытых топливом цилиндров, когда в двигатель подается слишком много топлива и все масло смывается со стенок цилиндра. Масло создает эффект уплотнения между кольцевыми узлами поршня и стенками цилиндров блока цилиндров.Когда этот тонкий слой масла смывается, компрессия двигателя выходит в картер. Двигатели с проблемой переполнения обычно показывают такое поведение.

Низкая компрессия во всех цилиндрах также может быть вызвана износом поршневых колец и стенок цилиндров. Может показаться, что двигатель работает нормально, но не производит достаточной мощности и выпускает небольшое количество голубоватого дыма.

Используйте небольшую канистру с маслом и залейте небольшое количество масла в каждый цилиндр. Повторите испытание на сжатие. Если сжатие резко улучшается, значит, вы обнаружили одну или обе проблемы, перечисленные выше.Однако, если нет никаких изменений в результатах испытания на сжатие, двигатель может столкнуться с проблемой синхронизации между коленчатым валом и распределительным валом двигателя. Возможно, вам потребуется проверить цепь или ремень привода ГРМ на правильность «синхронизации».

Низкое или нулевое показание в одном цилиндре

В этом случае высока вероятность внутреннего повреждения двигателя, такого как сломанный шатун, негерметичный или сломанный клапан, сломанная пружина клапана, погнутый толкатель или чрезмерный износ распределительного вала.

Низкие или нулевые показания в двух соседних цилиндрах

Это обычно случается, если прокладка головки блокада перегоревшая или непрочная. Другая возможность — сломанный распределительный вал в области, которая управляет клапанами двух соседних цилиндров.

Высокое показание в одном или нескольких цилиндрах

Высокие значения компрессии обычно наблюдаются на двигателях с чрезмерным накоплением углерода. Возможно, придется снять головки цилиндров и физически удалить нагар. Углерод прикрепляется к цилиндрической части головки и верхним частям поршней.В тяжелых случаях может потребоваться химическое обезуглероживание двигателя.

Переменная степень сжатия

Переменная степень сжатия

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Переменная степень сжатия может предложить ряд преимуществ, таких как ограничение необходимого пикового давления сгорания в дизелях и противодействие снижению эффективности из-за детонации в двигателях с искровым зажиганием.Механизмы для изменения степени сжатия двигателя включают в себя двухступенчатую систему, в которой можно выбрать низкую или высокую степень сжатия, или систему бесступенчатого сжатия. В большинстве двухступенчатых систем используется шатун переменной длины, в то время как для бесступенчатых систем было предложено множество механизмов.

Введение

Переменная степень сжатия дает ряд преимуществ для дизельных и бензиновых двигателей. Хотя концепция изучалась в течение многих лет [3537] [3538] [3539] [3540] [1942] , для многих приложений было трудно оправдать добавленную стоимость и сложность.Разработки, которые обеспечили более простой механизм за счет использования соединительных стержней переменной длины, по-видимому, делают его жизнеспособным вариантом для серийного производства.

Механизмы для изменения степени сжатия включают в себя либо двухступенчатую систему, в которой можно выбрать низкую или высокую степень сжатия, либо систему с непрерывным изменением, в которой можно выбрать любую степень сжатия между низким и высоким значением.

Двухступенчатые системы включают шатун переменной длины AVL и FEV.Системы с непрерывным изменением параметров могут быть реализованы с помощью различных механизмов, включая:

  • Многорычажный механизм между коленчатым валом и поршнем, Nissan и MCE-5
  • Подвижная головка / цилиндр, SAAB [3541] и Enerva [3542]
  • Эксцентриковые шейки коленчатого вала, Caterpillar [1927] [1921] [1934]
  • Подвижная головка поршня [3543]

Двухступенчатые системы

Система AVL

В двухступенчатой ​​системе переменной степени сжатия AVL используется телескопическая соединительная штанга, рис. 1.Активация осуществляется газом или массовыми силами. Сила инерции F M и сила газа F G используются для удлинения и укорачивания шатуна. Трансляционный шарнир укорачивает шатун, когда результирующая сила на валу F R направлена ​​к центру коленчатого вала (F G > F M ), и удлиняет шатун, когда он находится в противоположном направлении (F G M ). Ограничители определяют минимальную и максимальную длину шатуна.Чтобы «удерживать» одну из двух позиций, масло переносится в объемы ниже или выше трансляционного сочленения. Система управления сигнализирует, когда требуется изменение длины шатуна [3518] [3544] .

Рисунок 1 . Телескопический шатун AVL

###

Преимущества высокого наддува и высокой степени сжатия

Четырехцилиндровые двигатели мощностью в тысячу лошадиных сил — это реальность сегодняшнего дня в импортных дрэг-рейсингах. Эта реальность включает в себя передовые технологии принудительной индукции и управления двигателем, которые делают производство энергии простой частью сборки гоночного автомобиля.Современные высокопроизводительные двигатели работают при более высоких уровнях давления наддува и более высоких степенях сжатия, чем когда-либо прежде. Понимание того, как степень сжатия и давление наддува влияют на производительность, является ключом к максимальному увеличению производительности вашего уличного или гоночного автомобиля.

Майкл Феррара // Фото сотрудников DSPORT

DSPORT Выпуск № 125

Основы 4-тактного двигателя

Не вдаваясь в подробные объяснения динамики двигателя внутреннего сгорания, двигатель вашего автомобиля — это машина, предназначенная для преобразования энергии.Используя четырехтактный цикл, стратегию смешения топлива и воздуха и искру для зажигания, первая задача двигателя внутреннего сгорания — преобразовать химическую энергию, хранящуюся в топливе, в тепловую энергию (тепло) посредством процесса, называемого сгоранием. Вторая задача двигателя — преобразовать эту тепловую энергию в кинетическую энергию в виде лошадиных сил на маховике. Насколько хорошо двигатель может преобразовывать тепло (тепловую энергию) в мощность (кинетическую энергию), количественно определяется термическим КПД двигателя.Тепловой КПД двигателя во многом зависит от статической степени сжатия двигателя. [pullquote] БАЛАНС ПРОИЗВОДИТЕЛЬНОСТИ В ОТНОШЕНИИ СЖАТИЯ ЯВЛЯЕТСЯ ВЫЗОВОМ ПРОИЗВОДИТЕЛЯ ДВИГАТЕЛЯ И ТЮНЕРА В течение многих лет [/ pullquote]

Степень сжатия

Как видно из названия, степень сжатия двигателя показывает, насколько сжато топливовоздушный заряд во время такта сжатия четырехтактного процесса. Степень сжатия 10: 1 означает, что топливовоздушная смесь сжимается от полного объема цилиндра до объема, который составляет примерно одну десятую размера цилиндра.Итак, как степень сжатия двигателя влияет на производительность? При прочих равных условиях двигатель с более высокой степенью сжатия будет обеспечивать более высокий тепловой КПД. Это означает, что двигатель может превращать больше тепла, выделяемого в процессе сгорания, в лошадиные силы, а не терять тепло. Проще говоря, более высокий тепловой КПД приводит к дополнительной мощности и большей экономии топлива.

Какую дополнительную мощность можно ожидать при более высокой степени сжатия? Эмпирическое правило старой школы состоит в том, что каждая дополнительная точка, на которую повышается степень сжатия, обеспечивает дополнительные 4 процента мощности.Фактически, более точные прогнозы можно найти в прилагаемой диаграмме DSPORT. Эти значения были получены с использованием уравнения термодинамики для определения теплового КПД двигателя с циклом Отто.

Просматривая это уравнение, мы обнаруживаем, что увеличение степени сжатия с 8,0: 1 до 11,0: 1 должно привести к увеличению мощности на 9,2 процента. Точно так же уменьшение степени сжатия с 11: 1 до 7,0: 1 должно привести к снижению мощности на 12,3 процента.

Вы не поверите, но двигатели с высокой степенью сжатия конца 60-х, с коэффициентами сжатия до 12.5: 1, имел более высокий тепловой КПД, чем многие современные двигатели. Для двигателя того же размера более старый двигатель был бы более экономичным, если бы в нем были современные технологии топлива, головки блока цилиндров и зажигания в сочетании с высокооктановым газом 60-х годов.

Давление наддува

При работе с безнаддувными двигателями высокая степень сжатия является ключом к серьезным уровням мощности. Что касается применений с принудительной индукцией, хорошо известно, что увеличение давления наддува на турбокомпрессоре надлежащего размера увеличит выработку мощности (по крайней мере, до точки, когда мощность турбонагнетателя или топливной системы будет превышена).Конечно, большим недостатком более высокого давления наддува является то, что также увеличивается вероятность обнаружения детонации, повреждающей двигатель.

Баланс между наддувом и степенью сжатия уже много лет является проблемой для производителей двигателей и тюнеров. Взяв копию одного из руководств по принудительной индукции по технологии 60-х годов, вы подчеркнете их решение. Чем выше давление наддува, тем ниже степень сжатия двигателя. Для «серьезных» гонок с принудительной индукцией степень сжатия 7.0: 1 не были редкостью.

К счастью, плохие конструкции коллектора и подачи топлива, а также низкоэффективные «нагнетатели» не встречаются на слишком многих современных популярных транспортных средствах. Сегодня средний высокопроизводительный уличный или полосовой четырехцилиндровый гоночный двигатель с турбонаддувом имеет степень сжатия 9,5: 1, а в некоторых случаях даже при работающей степени сжатия достигает 11,5: 1 или более на спирте или E85. Современные технологии позволяют нашему гоночному поколению получить лучшее из обоих миров. Высокое давление наддува с высокой степенью сжатия.

Топливо и детонация

Октан и детонация

Октановое число указывает на вероятность «детонации» топлива. Стук, слышимый звук, данный условию, также называется детонацией. Стук отрицательно сказывается на производительности и надежности, и его следует избегать. Детонация возникает, когда топливно-воздушная смесь в цилиндре не подвергается идеальному сгоранию (процесс сгорания). Идеальное горение позволяет смеси равномерно гореть от свечи зажигания до тех пор, пока не образуется вся воздушно-топливная смесь.В лабораторных условиях идеальное горение будет происходить со скоростью около 100 футов в секунду в вакууме. В условиях турбулентности камеры сгорания двигателя хорошие скорости пламени могут достигать 250 футов в секунду. Во время детонации или детонации вместо ожога будет наблюдаться сильный взрыв со скоростью 2000 футов в секунду. Скорость горения имеет решающее значение для повышения давления в цилиндре. [pullquote] ПИКОВОЕ ДАВЛЕНИЕ В ЦИЛИНДРЕ ТЕНДЕРИВАЕТСЯ, КАК КОЭФФИЦИЕНТ СЖАТИЯ, ОБЪЕМНАЯ ЭФФЕКТИВНОСТЬ, ПОВЫШЕНИЕ ЗАЖИГАНИЯ И ПОВЫШЕНИЕ ДАВЛЕНИЯ [/ pullquote]

При сгорании топливовоздушной смеси повышается давление.В идеале давление в цилиндре повышается в оптимальное время, достигая пикового давления где-то между 17-20 градусами после верхней мертвой точки. Это позволяет давлению в цилиндре производить максимальную мощность на кривошипе. Когда происходит детонация, цикл давления в цилиндре не происходит должным образом. Фактически, когда происходит детонация, исходный фронт пламени и волна давления от желаемого фронта искрового зажигания встречаются с нежелательным фронтом самовоспламенения. Когда эти две волны давления встречаются, колебания давления производят «стук».Когда происходит детонация, мощность снижается, в то время как шатунные подшипники, шатуны, прокладки головки и поршни могут получить небольшое повреждение или катастрофический отказ в зависимости от серьезности детонации. Повышенные температуры обычно возникают в результате детонации, и это может привести к проблемам с преждевременным воспламенением, которые вызывают воспламенение топливно-воздушной смеси даже до возгорания искры.

Детонация или детонация — это не то же самое, что преждевременное зажигание. Предварительное зажигание происходит, когда топливовоздушная смесь воспламеняется до возгорания свечи зажигания.Иногда повышенная температура или горячая точка в цилиндре могут вызвать преждевременное возгорание. Хотя детонация и преждевременное зажигание вызывают нежелательные ожоги топливовоздушной смеси, разница между ними проста. Детонация или детонация происходит после начала горения топливовоздушной смеси, раньше происходит преждевременное зажигание. Оба создают нежелательные волны давления, которые влияют на производительность и могут привести к повреждению двигателя.

Потребность в более высоком октановом числе

Если в вашем двигателе возникает детонация, вам необходимо использовать топливо с более высоким октановым числом или уменьшить угол опережения зажигания.Потребность в топливе с более высоким октановым числом обычно возникает при повышении пикового давления в цилиндрах. Пиковое давление в цилиндре имеет тенденцию к увеличению по мере увеличения степени сжатия, объемного КПД, опережения зажигания и повышения давления наддува.

Общие правила просты. Безнаддувным двигателям потребуется топливо с более высоким октановым числом, поскольку либо увеличивается степень сжатия, либо опережает опережение зажигания. Двигатели с принудительной индукцией реагируют так же, но при увеличении давления наддува также потребуется более высокое октановое число.

Возможно, вы слышали следующее: «Не используйте топливо с слишком высоким октановым числом, иначе вы потеряете мощность». Это полуправда. Использование топлива со слишком высоким октановым числом не приведет к потере мощности вашего двигателя. Однако слишком низкая скорость горения топлива может привести к потере мощности вашего двигателя. В общем, популярные компоненты, используемые для повышения октанового числа топлива, также замедляют скорость горения. Конечно, это всего лишь обобщение, и это не относится ко всем видам топлива.

Альтернативные виды топлива: метанол и этанол

Метанол использовался в качестве альтернативного гоночного топлива для гоночного бензина в течение ряда лет.Одним из преимуществ метанола является то, что он может работать очень богато без значительного падения мощности. Это может позволить тюнеру использовать топливо в качестве охлаждающего инструмента при настройке. Однако метанол содержит только половину найденной энергии. в бензине. К счастью, при том же количестве воздуха можно сжечь примерно вдвое больше массы метанола по сравнению с бензином. В зависимости от того, кого вы спросите, на метаноле можно получить от 0 до 10 процентов больше энергии, чем на гоночном бензине.

Прирост мощности требует значительных компромиссов.Во-первых, метанол очень агрессивен. Вся топливная система должна быть совместима с метанолом, и даже в этом случае вы, вероятно, столкнетесь с проблемами коррозии. Лучше всего промыть систему метанолом по завершении гонки. Метанол также требует вдвое большей емкости топлива и емкости хранения бензина. Ваш топливный элемент или бензобак нужно будет увеличить вдвое, или вы сможете проехать только половину этого расстояния. Форсунки и топливные насосы также должны иметь вдвое большую пропускную способность, чем бензиновая установка.

Этанол или смеси этанола, такие как E85, сейчас более популярны, чем когда-либо, для уличного и гоночного использования. Этанол — это тот же тип алкоголя, который содержится в алкогольных напитках. Чтобы избежать юридических проблем, производители смешивают 98-процентный этанол с двухпроцентным бензином для производства E98 или 85-процентный этанол с 15-процентным бензином для производства E85. Преимущество этанола в том, что он не вызывает коррозии, которую вы обнаруживаете с метанолом. Однако у него более низкое энергосодержание, чем у метанола. Команда Venom Racing стала первыми импортными дрэг-гонщиками, которые начали ездить на шестерках на этаноле в качестве топлива.

Угловатые поршни (передние) чаще всего используются в двигателях с более низкой степенью сжатия, в то время как выпуклые поршни (задние) имеют тенденцию появляться в двигателях с более высокой степенью сжатия.

Степень сжатия 17: 1 и давление наддува 45 фунтов на квадратный дюйм

Нет. Не пытайтесь построить гоночный двигатель со степенью сжатия 17: 1 с давлением наддува до 45 фунтов на квадратный дюйм. Как всегда говорил покойный Джин Хамрич из Centerforce Clutches: «На каждое действие будет реакция. И если последствия реакции будут хуже, чем польза от действия, вы проиграете.«Итак, какова реакция на действие повышения степени сжатия при применении принудительной индукции? Сочетание слишком сильного наддува или слишком сильного сжатия увеличивает вероятность детонации.

Итак, с какой степенью сжатия вы должны работать при определенном давлении наддува? Это зависит в первую очередь от трех факторов. Качество топлива, эффективность промежуточного охладителя и состояние настройки (насколько хорошо настроены топливная кривая и кривые зажигания) двигателя. Двигатели на метаноле или E98 / E85 допускают более высокую степень сжатия, чем гоночный бензин.Более совершенные системы промежуточного охлаждения также позволят повысить степень сжатия. Некоторые тюнеры могут оптимизировать двигатель, несмотря на то, что у них более узкое окно настройки, чем у приложений с более высоким сжатием / высоким наддувом. В конце концов, разработка двигателя — единственный способ получить ответ на вопрос об идеальной степени сжатия и давлении наддува.

Оглядываясь назад почти на 50 лет назад, Chevrolet безраздельно властвовал, когда его сверхвысокопроизводительный небольшой блок объемом 283 кубических дюйма генерировал беспрецедентные 283 лошадиные силы — одну лошадиную силу на кубический дюйм.Поршни с высокой степенью сжатия, распредвал с твердым подъемником и пара четырехкамерных карбюраторов сделали невозможное возможным. Сегодня высокопроизводительные двигатели с регулируемым распределением фаз от Honda и Toyota производят почти вдвое больше, при мощности, приближающейся к 2,0 лошадиным силам на кубический дюйм. Двойные верхние распредвалы, четыре клапана на цилиндр, управление фазами газораспределения с компьютерным управлением, усовершенствования в конструкции головки блока цилиндров и электронный впрыск топлива являются залогом достижений в области выходной мощности без наддува.

Технологии постоянно развиваются, и новые правила заменяют старые правила, когда дело касается производительности. Однако соотношение между степенью сжатия, давлением наддува, детонацией и октановым числом топлива останется неизменным. Понимание этой взаимосвязи позволяет тюнерам настроить двигатель так, чтобы максимизировать производительность при заданном качестве топлива.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *