Posted in: Разное

Двс в разрезе: Двигатель в разрезе: описание, детали

Содержание

Двигатель в разрезе: описание, детали

Строение двигателя внутреннего сгорания известно широкой массе автолюбителей. Но, вот не все, зная какие детали установлены в моторе, знают их расположение и принцип работы. Чтобы полностью понять устройство автомобильного движка необходимо посмотреть разрез силового агрегата.

Работа двигателя в разрезе представлена в данном видеоматериале

Работа двигателя

Что понимать расположение деталей автомобильного двигателя и перед тем, как показать двигатель в разрезе необходимо понимать принцип работы мотора. Итак, рассмотрим, что приводит в движение колеса автомобиля.

Топливо, которое находиться в бензобаке при помощи топливного насоса подаётся на форсунки или карбюратор. Стоит отметить, что горючее проходит такой важный этап, как фильтрующий топливный элемент, который останавливает примеси и чужеродные элементы, что не должны попасть в камеру сгорания.

После нажатия педали акселератора электронный блок управления даёт команду подать горючее во впускной коллектор. Для карбюраторных ДВС — педаль газа привязана к карбюратору и чем больше давление идёт на педаль, тем больше топлива льётся в камеру сгорания.

Далее, со второй стороны подаётся воздух, проходя воздушный фильтр и дроссель. Чем больше открывается заслонка, тем большее количество воздуха поступит непосредственно во впускной коллектор, где образуется воздушно-топливная смесь.

В коллекторе воздушно-топливная смесь равномерно разделяется между цилиндрами и поочерёдно поступает через впускные клапана в камеры сгорания. Когда поршень движется в ВТМ, создаётся давление смеси и свеча зажигания образует искру, которая поджигает горючее. От данной детонации и взрыва поршень начинает двигаться вниз в НМТ.

Движение поршня передаётся на шатун, который прикреплён к коленчатому валу и приводит его в действие. Так, делает каждый поршень. Чем быстрее движутся поршни, тем больше обороты коленчатого вала.

После того, как воздушно-топливная смесь сгорела, открывается выпускной клапан, который выпускает отработанные газы в выпускной коллектор, а затем сквозь выхлопную систему наружу. На современных автомобилях, часть отработанных газов помогает работе двигателя, поскольку приводит в работу турбонаддув, который увеличивает мощность ДВС.

Также, стоит отметить, что на современных движках не обойтись без системы охлаждения, жидкость которой циркулирует через рубашку охлаждения и подкапотное пространство, чем обеспечивает постоянную рабочую температуру.

Двигатель в разрезе

Теперь можно рассмотреть, как выглядит ДВС в разрезе. Для большей наглядности и понятности рассмотрим двигатель ВАЗ в разрезе, с которым знакомы большинство автомобилистов.

На схеме представлен двигатель ВАЗ 2121 в продольном разрезе:

1. Коленчатый вал; 2. Вкладыш коренного подшипника коленчатого вала; 3. Звёздочка коленчатого вала; 4. Передний сальник коленчатого вала; 5. Шкив коленчатого вала; 6. Храповик; 7. Крышка привода механизма газораспределения; 8. Ремень привода насоса охлаждающей жидкости и генератора; 9. Шкив генератора; 10. Звёздочка привода масляного насоса, топливного насоса и распределителя зажигания; 11. Валик привода масляного насоса, топливного насоса и распределителя зажигания; 12. Вентилятор системы охлаждения; 13. Блок цилиндров; 14. Головка цилиндров; 15. Цепь привода механизма газораспределения; 16. Звёздочка распределительного вала; 17. Выпускной клапан; 18. Впускной клапан; 19. Корпус подшипников распределительного вала; 20. Распределительный вал; 21. Рычаг привода клапана; 22. Крышка головки цилиндров; 23. Датчик указателя температуры охлаждающей жидкости; 24. Свеча зажигания; 25. Поршень; 26. Поршневой палец; 27. Держатель заднего сальника коленчатого вала; 28. Упорное полукольцо коленчатого вала; 29. Маховик; 30. Верхнее компрессионное кольцо; 31. Нижнее компрессионное кольцо; 32. Маслосъёмное кольцо; 33. Передняя крышка картера сцепления; 34.

Масляный картер; 35. Передняя опора силового агрегата; 36. Шатун; 37. Кронштейн передней опоры; 38. Силовой агрегат; 39. Задняя опора силового агрегата.

Кроме рядного расположения цилиндров двигателя, как показано на схеме выше существуют ДВС с V- и W-образным расположением поршневого механизма. Рассмотри W-образный мотор в разрезе на примере силового агрегата Audi. Цилиндры ДВС располагаются так, что если смотреть на мотор спереди, то образуется английская буква W.

Данные движки обладают повышенной мощностью и используются на спорткарах. Данная система была предложена японским производителем Субару, но из-за высокого расхода горючего не получила широкого и массового применения.

V- и W-образные ДВС имеют повышенную мощность и крутящий момент, что делает их спортивной направленности. Единственным недостатком такой конструкции является то, что такие силовые агрегаты потребляют значительное количество топлива.

С развитием автомобилестроения компания General Motors предложила систему отключения половины цилиндров. Так, эти неработающие цилиндры приводятся в действие, только когда необходимо увеличить мощность или быстро разогнать автомобиль.

Такая система позволила значительно экономить топливо в повседневном использовании транспортного средства. Эта функция привязана к электронному блоку управления двигателем, поскольку, она регулирует, когда необходимо задействовать все цилиндры, а когда они не нужны.

Вывод

Принцип работы двигателя достаточно простой. Так, если посмотреть на разрез ДВС и понять расположение деталей можно легко разобраться с устройством движка, а также последовательности его процесса работы.

Вариантов расположения деталей мотора достаточно много и каждый автопроизводитель сам решает, как расположить цилиндры, сколько их будет, а также какую систему впрыска установить. Все это и даёт конструктивные особенности и характеристики мотора.

Разрез двигателя внутреннего сгорания — Автомобили Premier

Содержание

  • Работа двигателя
  • Двигатель в разрезе
  • Вывод

Строение двигателя внутреннего сгорания известно широкой массе автомобилистов. Но, вот не все, зная какие конкретно подробности установлены в моторе, знают их расположение и принцип работы.

Дабы всецело осознать устройство автомобильного движка нужно взглянуть разрез силового агрегата.

Работа двигателя в разрезе представлена в данном материале

Работа двигателя

Что осознавать размещение деталей автомобильного двигателя и перед тем, как продемонстрировать двигатель в разрезе нужно понимать принцип работы мотора. Итак, разглядим, что приводит в перемещение колеса автомобиля.

Горючее, которое пребывать в бензобаке при помощи топливного насоса подаётся на форсунки либо карбюратор. Необходимо подчеркнуть, что горючее проходит таковой ответственный этап, как фильтрующий топливный элемент, что останавливает примеси и чужеродные элементы, что не должны попасть в камеру сгорания.

По окончании нажатия педали акселератора электронный блок управления даёт команду подать горючее во впускной коллектор. Для карбюраторных ДВС — педаль газа привязана к карбюратору и чем больше давление идёт на педаль, тем больше топлива льётся в камеру сгорания.

Потом, со второй стороны подаётся воздушное пространство, проходя дроссель и воздушный фильтр. Чем больше раскрывается заслонка, тем большее количество воздуха поступит конкретно во впускной коллектор, где образуется воздушно-топливная смесь.

В коллекторе воздушно-топливная смесь равномерно разделяется между цилиндрами и поочерёдно поступает через впускные клапана в камеры сгорания. В то время, когда поршень движется в ВТМ, создаётся свеча зажигания и давление смеси образует искру, которая поджигает горючее.

От данной взрыва и детонации поршень начинает двигаться вниз в НМТ.

Перемещение поршня передаётся на шатун, что прикреплён к коленчатому валу и приводит его в воздействие. Так, делает любой поршень.

Чем стремительнее движутся поршни, тем больше обороты коленчатого вала.

По окончании того, как воздушно-топливная смесь сгорела, раскрывается выпускной клапан, что производит отработанные газы в выпускной коллектор, а после этого через выхлопную совокупность наружу.

На современных машинах, часть отработанных газов оказывает помощь работе двигателя, потому, что приводит в работу турбонаддув, что увеличивает мощность ДВС.

Кроме этого, необходимо подчеркнуть, что на современных движках не обойтись без совокупности охлаждения, жидкость которой циркулирует через подкапотное пространство и рубашку охлаждения, чем снабжает постоянную рабочую температуру.

Двигатель в разрезе

Сейчас возможно разглядеть, как выглядит ДВС в разрезе. Для большей наглядности и понятности разглядим двигатель ВАЗ в разрезе, с которым привычны большая часть автолюбителей.

На схеме представлен двигатель ВАЗ 2121 в продольном разрезе:

1. Коленчатый вал; 2. Вкладыш коренного подшипника коленчатого вала; 3. Звёздочка коленчатого вала; 4. Передний сальник коленчатого вала; 5. Шкив коленчатого вала; 6. Храповик; 7. Крышка привода механизма газораспределения; 8. Ремень привода насоса охлаждающей жидкости и генератора; 9. Шкив генератора; 10. Звёздочка привода масляного насоса, распределителя зажигания и топливного насоса; 11.

Валик привода масляного насоса, распределителя зажигания и топливного насоса; 12. Вентилятор совокупности охлаждения; 13.

Блок цилиндров; 14. Головка цилиндров; 15.

Цепь привода механизма газораспределения; 16. Звёздочка распределительного вала; 17. Выпускной клапан; 18.

Впускной клапан; 19. Корпус подшипников распределительного вала; 20. Распределительный вал; 21. Рычаг привода клапана; 22. Крышка головки цилиндров; 23.

Датчик указателя температуры охлаждающей жидкости; 24. Свеча зажигания; 25. Поршень; 26. Поршневой палец; 27.

Держатель заднего сальника коленчатого вала; 28. Упорное полукольцо коленчатого вала; 29. Маховик; 30. Верхнее компрессионное кольцо; 31. Нижнее компрессионное кольцо; 32.

Маслосъёмное кольцо; 33. Передняя крышка картера сцепления; 34. Масляный картер; 35. Передняя опора силового агрегата; 36. Шатун; 37.

Кронштейн передней опоры; 38. Силовой агрегат; 39. Задняя опора силового агрегата.

Не считая рядного размещения цилиндров двигателя, как продемонстрировано на схеме выше существуют ДВС с V- и W-образным размещением поршневого механизма. Разгляди W-образный мотор в разрезе на примере силового агрегата Audi. Цилиндры ДВС находятся так, что в случае если наблюдать на мотор спереди, то образуется британская буква W.

Эти движки владеют повышенной мощностью и употребляются на спорткарах. Эта совокупность была предложена японским производителем Субару, но из-за большого расхода горючего не взяла широкого и массового применения.

V- и W-образные ДВС имеют повышенную мощность и крутящий момент, что делает их спортивной направленности. Единственным недочётом таковой конструкции есть то, что такие силовые агрегаты потребляют большое количество горючего.

С развитием автомобилестроения компания Дженерал моторс внесла предложение совокупность отключения половины цилиндров. Так, эти неработающие цилиндры приводятся в воздействие, лишь в то время, когда нужно расширить мощность либо скоро разогнать автомобиль.

Такая совокупность разрешила существенно экономить горючее в повседневном применении транспортного средства. Эта функция привязана к электронному блоку управления двигателем, потому, что, она регулирует, в то время, когда нужно задействовать все цилиндры, а в то время, когда они не необходимы.

Вывод

Принцип работы двигателя достаточно простой. Так, в случае если взглянуть на разрез ДВС и осознать размещение подробностей возможно легко разобраться с устройством движка, а кроме этого последовательности его процесса работы.

Вариантов размещения подробностей мотора достаточно большое количество и любой автопроизводитель сам решает, как расположить цилиндры, сколько их будет, а кроме этого какую совокупность впрыска установить. Все это и даёт характеристики мотора и конструктивные особенности.

Замедленное в 150 раз воспроизведение работы двигателя внутреннего сгорания.


Похожие статьи, подобранные для Вас:

Как были устроены автомобили до изобретения бензинового двигателя

26 января 1886 года немецкий инженер Карл Бенц запатентовал автомобиль с двигателем внутреннего сгорания. Начиная с того момента, весь мир планомерно завоевали самодвижущиеся повозки на четырех колесах, и еще не известно, чем все это закончится. В своеобразный день рождения автомобиля «РГ» решила вспомнить, как были устроены машины до эпохи ДВС.

1. Историки предполагают, что первые автомобили могли появиться уже в ХIV веке. Ведь именно тогда итальянец Гвидо да Виджевано скрестил ветряную мельницу и тележку, получив прообраз современного транспортного средства. А немного позднее небезызвестный Леонардо да Винчи разработал подобный механизм, но с приводом на трехколесный велосипед. Гений он и есть гений…

2. А вот первым работающим паровым транспортом в мире считается изобретение Фердинанда Вербиста — иезуита из Китая, который построил свой автомобиль, как забавную игрушку, не более. Правда, игрушку для императора. Машинка была крайне мала и не могла доставить из точки «А» в точку «Б» ни царственную особу, ни простого смертного. Но факт остается фактом: в 1672 году паровой транспорт празднует свой день рождения.

3. Следующим в очереди отцов-основателей паровых машин стоит Томас Ньюкомен. Именно он в 1712 году воплотил в металле первый паровой двигатель, состоящий из цилиндра и поршня. Это уже, действительно, был прорыв! Однако, через 53 года Джеймс Уатт значительно усовершенствовал изобретение Ньюкомена. Теперь двигатель работал на основе давления, а не вакуума и стал более компактным и производительным. Его-то и начали ставить на первые паровозы.

4. В 1769 году Николас Джозеф Кагнот разработал почти полноценный авто для передвижения по узким улочкам Парижа. Копия этой машины выставлена сейчас в Музее искусств и ремесел в той же столице Франции. Правда, в те далекие времена горожане были не в восторге, когда мимо их домов проносился железный монстр весом более трех с половиной тонн! И хорошо, что в один прекрасный момент уже второй экземпляр этого «чуда» врезался в стену, разрушил ее и сам не подлежал восстановлению. Вообще, первые паровые машины были крайне тяжелыми, поэтому в следующие сто лет их ставили исключительно на рельсы… Вот как зарождалась система железнодорожных путей.

5. Вы не поверите, но электромобиль, это чудо современной техники, был изобретен еще до повсеместного применения двигателя внутреннего сгорания! Если исторические архивы не врут, то в 1828 году, изобретатель из Венгрии Аноис Джедлик собрал первую в мире модель электромобиля! А первым, кто попытался поставить данное изобретение на коммерческие рельсы, были Томас Давенпорт и Роберт Дэвидсон. Их авто с батареями увеличенной емкости начали производить в 1881-м. Но достаточно большой мощности тогда добиться так и не удалось, что дало толчок началу истории ДВС.

Изучаем странные двигатели, застрявшие на обочине прогресса — ДРАЙВ

Двигатели Ванкеля, Стирлинга, разного рода газотурбинные установки так и не стали автомобильным мейнстримом. Ряд известных компаний (от Мазды до GM, от Мерседеса до Volvo) работали над ними десятки лет, упорствовали маленькие фирмы и отдельные изобретатели. Увы, в конце концов выяснялось, что подводных камней в той или иной конструкции намного больше, чем казалось вначале. Но это не значит, что развитие альтернативных агрегатов невозможно. Энтузиасты перебирают идею за идеей, и мне как инженеру-двигателисту интересно поделиться с вами рядом экзотических схем.

Некоторые создатели перспективных двигателей решили, что комбинация из цилиндра, поршня, шатуна и коленвала отлично себя зарекомендовала более чем за столетие и, чтобы улучшить параметры ДВС, не надо изобретать её заново — достаточно лишь подправить кое-какие аспекты. Поэтому первый в нашем обзоре — мотор американской компании Scuderi Group, который имеет классические такты впуска, сжатия, рабочего хода и выпуска, но происходят они не в одном и том же цилиндре, а в разных. Так называемый холодный цилиндр отвечает за впуск и сжатие, а второй, горячий — за рабочий ход и выпуск.

В простейшем моторе Scuderi цилиндров два: поршень в холодном цилиндре отстаёт на 30 градусов поворота коленвала от собрата в горячем.

Пока в рабочем цилиндре идёт расширение газов, в холодном, компрессорном, — такт впуска. В рабочем — выпуск, в холодном — сжатие. В конце такта сжатия поршни приближаются к своим верхним мёртвым точкам, смесь через перепускной канал перебрасывается из холодного цилиндра в горячий и поджигается. Такой разделённый цикл (в принципе — тот же цикл Отто, пусть и модифицированный) американцы придумали в 2006 году, а в 2009-м построили опытный Scuderi Split Cycle Engine. У компрессорного и рабочего цилиндров могут быть разные диаметры и ходы поршней, что даёт гибко настраивать параметры — получается аналог цикла Миллера с дополнительным расширением газов.

Экспериментальный литровый мотор Scuderi на стенде работает плавно и относительно тихо — даже без глушителя!

По расчётам мотор Scuderi на 25% экономичнее обычного, а с турбонаддувом и теплообменником, передающим энергию выхлопных газов воздуху в перепускном канале, и того выше. В четырёхцилиндровом варианте один компрессорный цилиндр может загонять смесь в три рабочих.

Если к каналу между цилиндрами добавить ответвление с клапанами и баллоном высокого давления, можно заставить такой мотор собирать энергию при торможении и использовать её при разгоне (этот режим показан на последней минуте первого ролика). Однако на протяжении уже ряда лет деятельность компании Scuderi Group ограничивается лишь опытными образцами и участием в выставках. Похоже, реальная экономичность тут всё же не может перебить высокую сложность конструкции.

Двухтактный агрегат Paut Motor использует принцип, подобный применённому в моторах Scuderi Group, — сжатие и рабочий ход тут происходят в разных цилиндрах, между которыми устроены перепускные каналы.

К разделённому рабочему циклу обратились было и разработчики хорватской фирмы Paut Motor. Их «разнесённая» конструкция привлекла меньшим числом деталей, низким трением и сниженным шумом. А необходимость внешнего бака для системы смазки, вызванная тем, что в картере масла не предусмотрено, не испугала. Изобретатели построили несколько опытных образцов. Для рабочего объёма в семь литров их габариты (500×440×440 мм) и вес (135 кг) оказались чуть ли не вдвое ниже, чем у традиционных ДВС. А отдачу так и не выяснили. Последний прототип был собран в 2011 году, а затем проект заглох.

В агрегате Paut Motor — четыре рабочих камеры с поршнями диаметром 100 мм и четыре компрессионных (120 мм). Двухсторонние поршни передают усилия на коленвал, который, благодаря паре шестерён с внутренним зацеплением, совершает планетарное движение.

Двухтактный двигатель Bonner (по имени спонсора, фирмы Bonner Motor), изобретённый в 2006 году в США Вальтером Шмидом, устроен ещё сложнее. Как и в проекте Paut Motor, цилиндры тут расположены буквой X, а коленвал тоже совершает планетарное движение за счёт системы шестерён.

Ключевое отличие от схемы фирмы Paut Motor — роль рабочих поршней играют подвижные цилиндры, соединённые с коленвалом (показаны красным). А с внешней стороны их закрывают неподвижные поршни (отмечены серым).

За газораспределение в Боннере отвечают клапаны в донышках цилиндров и вращающиеся золотники в корпусе мотора. При этом внешние поршни могут немного смещаться под давлением масла, обеспечивая переменную степень сжатия. Запутанная схема! А всё — ради высокой мощности на единицу веса. В теории Bonner выглядит интересно, но на практике о нём уже давно нет никаких новостей — судя по всему, надежд он не оправдал.

Некий мистер Смоллбон получил американский патент на аксиальный мотор ещё в 1906 году. Но если бы такой агрегат был идеалом, через 110 лет все автомобили использовали бы его.

Другие изобретатели не меняли рабочие циклы ДВС, а сосредотачивались на расположении его частей. Таковы, например, аксиальные моторы, которым уже больше ста лет (один из ранних патентов — на рисунке выше). Все они отличаются деталями, но объединены общим принципом — цилиндры располагаются, как патроны в барабане револьвера, с соосным выходным валом. За преобразование возвратно-поступательных движений поршней во вращение вала отвечают разные системы вроде наклонённых к продольной оси двигателя штифтов, косых шайб и тому подобного.

По такому принципу сегодня работают некоторые компрессоры. Добавив продуманное газораспределение и зажигание, можно превратить подобный блок в мотор…

. ..такой, как американский Dina-Cam 1960-х с полувековыми корнями. Благодаря хорошему соотношению веса и мощности аксиальные агрегаты прочили на роль моторов для лёгких самолётов.

Разновидностью аксиальных агрегатов является новозеландский проект фирмы Duke Engines — пятицилиндровый четырёхтактник рабочим объёмом три литра. По сравнению с классическим ДВС того же литража этот был, по расчётам авторов, на 19% легче и на 36% компактнее. Ему сулили применение в самых разных областях, но мечты о завоевании целого мира остались мечтами.

Опытный образец мотора Duke был построен в 2012 году. Потом он мелькал на выставках, собирал призы, но вот уже несколько лет новостей о нём нет.

Ещё более сложный аксиальный пример — двигатель RadMax канадской фирмы Reg Technologies. Здесь вместо цилиндров в общем барабане с помощью тонких лопастей организована дюжина отсеков. В прорезях ротора установлены пластины, которые сдвигаются вдоль них по мере его вращения. С торцов полученные переменные объёмы ограничивают изогнутые поверхности: они задают траекторию движения лопастей и заведуют газообменом.

Основные части мотора RadMax. За один оборот вала тут происходит 24 полных рабочих цикла.

Схема RadMax позволяет создавать двигатели под разные виды топлива, хотя изначально изобретатели выбрали дизельное. В 2003 году был построен образец диаметром и длиной всего 152 мм. Он развивал 42 силы — в разы больше, чем схожий по габаритам ДВС. Позже фирма отчиталась о создании более крупных прототипов на 127 и 380 сил. Но, судя по релизам, вся её деятельность по-прежнему не выходит за рамки экспериментов.

Ещё один пример превосходства теории над практикой — тороидальный мотор Round Engine (или VGT Engine) уже исчезнувшей канадской компании VGT Technologies. Первые прототипы двигателя с тором переменной геометрии (отсюда и буквы VGT — Variable Geometry Toroidal Engine) инженеры испытывали ещё в 2005 году.

Авторы кругового двигателя избавились от возвратно-поступательных движений. Отсюда — радикальное снижение вибраций. Плюсом можно назвать минимальное число деталей и хорошую расчётную экономичность.

Тор здесь играет роль цилиндра, внутри которого вращается ротор с парой закреплённых на нём поршней. Необходимые для обеспечения рабочих тактов переменные объёмы образуются между поршнями с помощью тонкого распределительного диска с вырезом под поршни, который ремённым или иным приводом вращается поперёк тора. Этот диск ограничивает топливно-воздушную смесь в процессе сжатия и рабочего хода.

Система фирмы Garric Engines похожа на VGT, однако вместо поперечного распреддиска использовано шесть поворотных золотников.

В 2009 году свой тороидальный мотор, принципиально повторяющий канадский, разработали американцы Гарри Келли и Рик Айвас (видео выше). По их оценке, тор полуметрового диаметра обеспечивал бы 230 л.с. и около 1000 Н•м всего при 1050 об/мин. Но… На сайте их фирмы Garric Engines сейчас висит заглушка «Спасибо за интерес. В будущем страница может быть обновлена». Возможно, чуть лучшая судьба ждёт так называемый нутационный двигатель, придуманный американцем Леонардом Мейером в 2006 году — его хотя бы построили в нескольких экземплярах.

Главный принцип нутационного диска: в процессе работы он не вращается вокруг вала, а качается из стороны в сторону. Добавив перегородки, получаем отсеки, в которых газ может сжиматься и расширяться.

Нутация по-латински означает «кивать». Мейер сформировал четыре рабочие камеры переменного объёма между корпусом мотора и «кивающим» по сторонам диском, который играет роль поршня. Диск разрезан пополам вдоль своего диаметра и нанизан на Z-образный вал, с которого и снимается мощность. За газообмен отвечают каналы и клапаны в корпусе.

Рабочий диск показан в разрезе. Минимализму, уравновешенности и лёгкости нутационной конструкции позавидует даже двигатель Ванкеля.

Прототипы мотора Мейера построила компания Baker Engineering и родственная ей Kinetic BEI. С единственным диском диаметром 102 мм агрегат развивает семь сил, а с парой дисков по 203 мм — уже 120! Длина двухдискового двигателя — 500 мм, диаметр — 300, а рабочий объём — 3,8 л. На килограмм веса — 2,5−3 «лошади» против одной-двух у массовых атмосферных ДВС (из немассовых некоторые моторы Ferrari выдают больше трёх сил на килограмм, но при высоченных 9000 об/мин). Литровая мощность, правда, не впечатляет. Ныне Baker и Kinetic вроде как доводят проекты до ума, хотя особой активности на их сайтах не видно.

За один оборот вала в двухдисковом нутационном агрегате происходят те же четыре рабочих хода, что и в восьмицилиндровом поршневом «четырёхтактнике». На фото — одно- и двухдисковые рабочие прототипы. (Кстати, из двух дисков в принципе можно создать и машину с разделённым циклом, одному отдать сжатие смеси, другому рабочий ход.)

В 2010 году нутационный мотор попал в зону интереса исследовательского центра ВВС США. Гарри Смит, менеджер лаборатории, демонстрирует внутренности мотора и объясняет, что особую ценность конструкция представляет для лёгкой авиации.

Идея роторных агрегатов различного типа так часто привлекает новаторов, будто один лишь отход от знакомой схемы даёт существенное повышение характеристик. Так, Николай Школьник, выходец из СССР, давно перебравшийся в США, с сыном Александром разработал мотор, напоминающий двигатель Ванкеля, вывернутый наизнанку. Ротор арахисовой формы также вращается в треугольной камере, но в отличие от агрегата Ванкеля уплотнители закреплены не на поршне, а на стенках камеры.

В роторе LiquidPiston есть полость, играющая свою роль в газообмене. Процесс сгорания проходит при постоянном объёме, а затем идёт расширение — это один из факторов, повышающих КПД.

Для развития конструкции Школьники основали фирму LiquidPiston, которой заинтересовалось оборонное агентство DARPA — теперь оно софинансирует эксперименты в расчёте на перспективы работы «арахисовых» агрегатов в лёгких летательных аппаратах, включая беспилотники, и в переносных генераторах. Опытный моторчик рабочим объёмом 23 см³ обладает неплохим для таких габаритов КПД в 20%. Теперь авторы нацелены на дизельный прототип весом около 13 кг и мощностью 40 л.с. для установки на гибридный автомобиль. Его КПД якобы вырастет уже до 45%.

Первый образец мотора Школьников можно положить на ладонь. Он весит 1,8 кг и может заменить вдесятеро более тяжёлый поршневой ДВС карта (показан слева). Мощность всего 3 л.с., но классический двигатель такого размера был бы ещё слабее.

Последний рассмотренный нами мотор демонстрирует, что идея плоского агрегата (ротор ведь можно сделать очень узким) заманчива. Вместе с тем для её реализации сами роторы не так обязательны — достаточно «оквадратить» традиционный поршень и, соответственно, сделать прямоугольным на виде сверху цилиндр.

Этой странной разработке фирмы Pivotal Engineering уже несколько лет, в течение которых создан ряд образцов, приводивших в движение мотоциклы и самолёты. Авторы адресуют так называемый качающийся поршень в первую очередь авиации. Помимо высоких выходных характеристик по отношению к весу и габаритам, такой двухтактный агрегат отлично поддаётся форсировке за счёт прохождения сквозь неподвижную ось поршня (рисунок ниже) жидкостного канала охлаждения. С иной схемой такой трюк затруднителен.

Задумка компании Pivotal Engineering из Новой Зеландии представляет собой мотор с качающимися прямоугольными (в плане) поршнями. Один их край закреплён на неподвижной оси, второй — связан с шатуном. Справа — четырёхцилиндровый образец на 2,1 л.

За пределами нашего обзора осталось ещё много экзотических разработок вроде 12-роторного мотора Ванкеля, двигателя Найта или агрегатов со встречными поршнями, ДВС с изменяемой степенью сжатия или с пятью тактами (есть и такие!), а ещё роторно-лопастные агрегаты, в которых составные части ротора совершают движения, будто сходящиеся и расходящиеся лезвия ножниц.

Ещё пример чудачеств — H-образный двигатель, объединяющий в себе две рядные «пятёрки». Автор патента Луи Хернс полагает, что одну половину агрегата можно адаптировать под бензин, а другую — под метан и активировать их как врозь, так и вместе.

Даже беглый экскурс за пределы классических ДВС показал, сколь большое количество идей не находит массового воплощения. Роторы часто губит проблема износа уплотнений. Роторно-лопастные варианты вдобавок страдают от высоких знакопеременных нагрузок, разрушающих механизм связи лопастей и вала. Это только одна из причин, почему мы не встречаем такие «чудеса» на серийных автомобилях.

Вторая — в том, что и традиционные ДВС не стоят на месте. У последних бензиновых образцов с циклом Миллера термический КПД доходит до 40% даже без турбонаддува. Это много. У большинства бензиновых агрегатов — 20−30%. У дизелей — 30−40% (на крупных судах — до 50). А главное — глобальная альтернатива ДВС уже найдена. Это электромоторы и силовые установки на топливных элементах. Поэтому если изобретатели диковинок не решат все технические проблемы в самое ближайшее время, вырулить с обочины прогресса перед электричками они попросту не успеют.

Двигатель внутреннего сгорания — устройство и принцип работы ДВС

Двигатель внутреннего сгорания (ДВС) – это самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. В рамках данной статьи мы рассмотрим устройство и принцип работы ДВС.

Внизу страницы смотрите видео, на котором наглядно показано устройство и принцип работы бензинового ДВС.

В каждом двигателе внутреннего сгорания есть цилиндр и поршень. Именно внутри цилиндра ДВС происходит преобразование тепловой энергии, выделяемой при сжигании топлива, в энергию механическую, способную заставить наш автомобиль двигаться. Этот процесс повторяется с частотой несколько сотен раз в минуту, что обеспечивает непрерывное вращение выходящего из двигателя коленчатого вала.

Принцип работы четырёхтактного двигателя внутреннего сгорания

В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу.  Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:


Устройство двигателя внутреннего сгорания

Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.

  1. Такт первый — ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

Видео: как устроен двигатель внутреннего сгорания

1. Профильное оборудование / КонсультантПлюс

Профильное оборудование

Разрезная модель двухтактного двигателя мопеда

— Тип конструкции: разрезная напольная,

— назначение: изучение принципа работы двигателя внутреннего сгорания (ДВС), навесного оборудования и электрооборудования двухколесного транспортного средства (мопеда)

Разрезная модель четырехтактного двигателя, малогабаритного

— Тип конструкции: стенд,

— назначение: изучение ДВС и навесных агрегатов,

— разрезы для демонстрации вращения коленчатого вала, работы клапанов (впуск, выпуск) и т.д.: наличие

Лабораторный стенд для изучения геометрии передней оси автомобиля

— Тип конструкции: стенд,

— назначение: изучение конструкции передней оси автомобиля, принципов функционирования и режимов работы; формирование первоначальных навыков по диагностированию, техническому обслуживанию и ремонту автомобиля

Набор демонстрационных стендов для изучения геометрии передней подвески и рулевого управления автомобиля

Состав, не менее чем: регулировка схождения колес, рычаги подвески разной длины, геометрия рулевого управления, регулируемые углы установки колес, рулевое колесо, ось руля, плечо обката, углы установки колеса

Разрезная модель бензинового или дизельного двигателя легкового автомобиля в сборе с механической коробкой передач

Назначение: для изучения устройства двигателя и коробки передач

Автоматическая коробка передач легкового переднеприводного автомобиля (разрезная модель)

Назначение: для изучения устройства коробки передач

Разрезная модель заднего моста с тормозными механизмами и фрагментом карданной передачи

— Дифференциал в сборе: наличие,

— тормозные механизмы, один из которых в разрезе: наличие,

— карданная передача в сборе: наличие

Учебный набор для обучения и построения моделей механизмов и машин

— Количество стандартных моделей: не менее 16,

— изучение принципов действия простых и усложненных механизмов

Практическое пособие для изучения основ механики, кинематики и динамики

— Назначение: для изучения устройства и принципов действия машин,

— создание моделей различной степени сложности: наличие.

— возможность применения электромоторов: наличие

Практическое пособие для изучения пневматических систем

— Элементы для создания пневматических систем: наличие,

— количество создаваемых моделей: не менее 4 шт.,

— устройство для измерения давления (манометр): наличие

Ресурсный набор с электромоторами

— Батарейный блок на 6 батареек/аккумуляторов: наличие,

— мотор: не менее 1 шт.,

— переключатель со шлейфом: наличие,

— дополнительные детали: наличие

Электродвигатель мощный со встроенным редуктором

— Рабочее напряжение: не менее 5 В,

— максимальный крутящий момент: не менее 800 оборотов в минуту

Большой мотор

— Рабочее напряжение: не менее 9 В.

— максимальный крутящий момент: не менее 200 оборотов в минуту

Средний сервомотор

— Датчик угла поворота: наличие,

— крутящий момент: не менее 250 оборотов в минуту

Конструктор для сборки модели автомобиля с дистанционным управлением

Форм-фактор: конструктор-внедорожник (двух типов) с пультом дистанционного управления

Робототехнический конструктор

— Программируемый микрокомпьютер: наличие,

— базовый набор датчиков: наличие

Ресурсный набор к робототехническому конструктору

— Дополнительные элементы и детали к базовому набору: наличие,

— совместимость с п. 1.16

Аккумуляторная батарея

— Емкость: не менее 2000 мАч,

— тип тока: постоянный,

— совместимость с п. 1.16

Зарядное устройство постоянного тока

— Измерение расстояния до объекта: наличие,

— прием ИК-сигналов: наличие,

— совместимость с п. 1.16

Набор соединительных кабелей

— Возможность соединения микрокомпьютера с датчиками и моторами: наличие,

— совместимость с п. 1.16

Образовательный комплект для сборки модели автомобиля с компьютерным зрением

— Назначение: изучение принципов работы беспилотных автомобилей,

— широкоугольная камера: наличие,

— контроллер: наличие

Доска магнитно-маркерная для изучения дорожного движения

— Тип доски: панорамная, трехэлементная,

— изображение с демонстрационной схемой дорожного движения участка города: наличие

Магнитно-маркерный макет для изучения дорожного движения

— Количество магнитно-маркерных панно: не менее 3 шт.,

— цветные маркеры: наличие,

— магниты: наличие.

— совместимость с п. 1.22

Комплект тематических магнитов с моделями автомобилей

— Количество магнитов в виде автомобилей: не менее 8 шт.,

— совместимость с п. 1.22

Комплект тематических магнитов с дорожными знаками

— Количество магнитов в виде дорожных знаков: не менее 65 шт.,

— совместимость с п. 1.22

Устройство двигателя внутреннего сгорания — видео, схемы, картинки

Двигатель внутреннего сгорания – это одно из тех изобретений, которые в корне перевернули нашу жизнь – с лошадиных повозок люди смогли пересесть на быстрые и мощные автомобили.

Первые ДВС обладали малой мощностью, а коэффициент полезного действия не доходил даже до десяти процентов, но неутомимые изобретатели – Ленуар, Отто, Даймлер, Майбах, Дизель, Бенц и множество других – привносили что-то новое, благодаря чему имена многих увековечены в названиях известных автомобильных компаний.

ДВС прошли длительный путь развития от коптящих и часто ломающихся примитивных моторов, до сверхсовременных битурбированных двигателей, но принцип их работы остался все тот же – теплота сгорания топлива преобразуется в механическую энергию.

Название “двигатель внутреннего сгорания” используется потому, что топливо сгорает в середине двигателя, а не снаружи, как в двигателях внешнего сгорания – паровых турбинах и паровых машинах.

Благодаря этому ДВС получили множество положительных характеристик:

  • они стали намного легче и экономичнее;
  • стало возможным избавиться от дополнительных агрегатов для передачи энергии сгорания топлива или пара к рабочим частям двигателя;
  • топливо для ДВС обладает заданными параметрами и позволяет получать значительно больше энергии, которую можно преобразовать в полезную работу.

Устройство ДВС

Вне зависимости от того, на каком топливе работает двигатель – бензин, дизель, пропан-бутан или экотопливо на основе растительных масел – главным действующим элементом является поршень, который находится внутри цилиндра. Поршень похож на металлический перевернутый стакан (скорее подойдет сравнение с бокалом для виски – с плоским толстым дном и прямыми стенками), а цилиндр – на небольшой кусок трубы, внутри которой и ходит поршень.

В верхней плоской части поршня имеется камера сгорания – углубление круглой формы, именно в нее попадает топливно воздушная смесь и здесь же детонирует, приводя поршень в движение. Это движение передается на коленчатый вал с помощью шатунов. Шатуны верхней своей частью прикреплены к поршню с помощью поршневого пальца, который просовывается в два отверстия по бокам поршня, а нижней – к шатунной шейке коленчатого вала.

Первые ДВС имели всего один поршень, но и этого было достаточно, чтобы развить мощность в несколько десятков лошадиных сил.

В наше время тоже применяются двигатели с одним поршнем, например пусковые двигатели для тракторов, которые выполняют роль стартера. Однако больше всего распространены 2-х, 3-х, 4-х, 6-и и 8-цилиндровые двигатели, хотя выпускаются двигатели на 16 цилиндров и более.

Поршни и цилиндры находятся в блоке цилиндров. От того, как расположены цилиндры по отношению к друг другу и к другим элементам двигателя, выделяют несколько видов ДВС:

  • рядные – цилиндры расположены в один ряд;
  • V-образные – цилиндры расположены друг против друга под углом, в разрезе напоминают букву “V”;
  • U-образные – два объединенных между собой рядных двигателя;
  • X-образные – ДВС со сдвоенными V-образными блоками;
  • оппозитные – угол между блоками цилиндров составляет 180 градусов;
  • W-образные 12-цилиндровые – три или четыре ряда цилиндров установленные в форме буквы “W”;
  • звездообразные двигатели – применяются в авиации, поршни расположены радиальными лучами вокруг коленчатого вала.

Важным элементом двигателя является коленчатый вал, на который передается возвратно-поступательное движение поршня, коленвал преобразует его во вращение.

Когда на тахометре отображаются обороты двигателя, то это как раз и есть количество вращений коленвала в минуту, то есть он даже на самых низких оборотах вращается со скоростью 2000 оборотов в минуту. С одной стороны коленвал соединен с маховиком, от которого вращение через сцепление подается на коробку передач, с другой стороны – шкив коленвала, связанный с генератором и газораспределительным механизмом через ременную передачу. В более современных авто шкив коленвала связан также со шкивами кондиционера и гидроусилителя руля.

Топливо подается в двигатель через карбюратор или инжектор. Карбюраторные ДВС уже отживают свое из-за несовершенства конструкции. В таких ДВС идет сплошной поток бензина через карбюратор, затем топливо смешивается во впускном коллекторе и подается в камеры сгорания поршней, где детонирует под действием искры зажигания.

В инжекторных двигателях непосредственного впрыска топливо смешивается с воздухом в блоке цилиндров, куда подается искра от свечи зажигания.

Газораспределительный механизм отвечает за согласованную работу системы клапанов. Впускные клапаны обеспечивают своевременное поступление топливновоздушной смеси, а выпускные отвечают за выведение продуктов сгорания. Как мы уже писали раньше, такая система используется в четырехтактных двигателях, тогда как в двухтактных необходимость в клапанах отпадает.

На данном видео показано как устроен двигатель внутреннего сгорания, какие функции выполняет и как он это делает.

Устройство четырехтактного ДВС

Загрузка…

Поделиться в социальных сетях

Двигатель внутреннего сгорания — Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах. Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем прерывистого внутреннего сгорания , тогда как двигатель, использующий турбину , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. В результате неполного сгорания могут присутствовать такие загрязнители, как окись углерода.

Двухтактный двигатель

главная
Рисунок 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Воздушно-топливная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

Понимание правил стационарных двигателей

На этой странице:


Как EPA регулирует стационарные двигатели?

Требования EPA к качеству воздуха для стационарных двигателей различаются в зависимости от:

  • , является ли двигатель новым или существующим и
  • , расположен ли двигатель в области источника или основного источника и является ли двигатель двигателем с воспламенением от сжатия или двигателем с искровым зажиганием.Двигатели с «искровым зажиганием» далее подразделяются по циклам мощности — то есть, двухтактный или четырехтактный, и является ли двигатель «богатым» (сгорает с большим количеством топлива по сравнению с воздухом) или «бедным сгорает» (меньше топлива по сравнению с воздухом) двигатель.

Некоторые нормативные акты расширили количество и типы стационарных RICE, которые должны соответствовать федеральным требованиям. К ним относятся:

На какие типы двигателей распространяются правила?
  1. Двигатели мощностью> 500 лошадиных сил (л.с.) в основном источнике HAP:

    Существующие двигатели , если они построены до 19 декабря 2002 г.
    Новые двигатели , если построены 19 декабря 2002 г. или позднее
    Реконструированные двигатели , если реконструкция началась 19 декабря 2002 г. или позднее

  2. Двигатели мощностью ≤500 л.с., расположенные у основного источника HAP, и двигатели всей мощностью, расположенные в районе источника HAP:

    Существующие двигатели , если они построены до 12 июня 2006 г.
    Новые двигатели , если построены 12 июня 2006 г. или позднее
    Реконструированные двигатели , если реконструкция началась 12 июня 2006 г. или позднее

На какие типы двигателей НЕ распространяются правила?

  1. Автомобили или внедорожные двигатели, к которым относятся:
    • самоходная (тракторы, бульдозеры)
    • приводится в движение при выполнении своей функции (газонокосилки)
    • переносной или переносной (с колесами, салазками, ручками для переноски, тележкой, прицепом или платформой).Примечание: переносной внедорожный двигатель становится стационарным, если он находится в одном месте более 12 месяцев (или полный годовой период работы сезонного источника)
  2. Существующие аварийные двигатели , расположенные в жилых, институциональных или коммерческих зонах источников и не используемые для обеспечения надежности на местном уровне. Двигатель должен соответствовать требованиям подраздела ZZZZ к работе аварийного двигателя:
    • Неограниченное использование в чрезвычайных ситуациях (например, отключение электроэнергии, пожар, наводнение)
    • Аварийные двигатели могут работать в течение 100 часов в год для обслуживания / тестирования
    • 50 часов в год из 100 часов в год могут быть использованы для:
      1. Чрезвычайные ситуации при отсутствии финансовой договоренности
      2. надежность на местном уровне в рамках финансового соглашения с другим предприятием при соблюдении определенных критериев (существующий RICE только у местных источников HAP).

Улучшение двигателя внутреннего сгорания, часть 1

Двигатель внутреннего сгорания может быть чудом инженерной мысли, но это не значит, что он обязательно современный.

Фактически, базовая конструкция, впервые разработанная Жаном Ленуаром в 1850-х годах, не слишком далеко от двигателя, который, вероятно, используется сегодня в вашем автомобиле. Идея воспламенения топлива внутри герметичного блока цилиндров с силой, направленной на цилиндры и поршни, приводящие в движение транспортное средство, улучшалась на протяжении десятилетий, но остается в основном такой же, как и всегда.

И это часть проблемы. Инженеры могут сделать лишь так много для повышения эффективности, производительности и долговечности проверенного временем двигателя внутреннего сгорания.

Вот почему Амир Хаджепур, профессор инженерии механики и мехатроники из Университета Ватерлоо в Ватерлоо, Онтарио, Канада, и его команда работали над улучшением не самой камеры сгорания, а клапанов, управляющих входом и выхлопом. Их инновация, полностью настраиваемая система, которая может регулировать открытие и закрытие впускных и выпускных клапанов, может повысить эффективность двигателей внутреннего сгорания более чем на 10 процентов и является результатом более чем десятилетней работы.

Когда мы сравнили начальные фазы газораспределения с оптимальными фазами газораспределения, мы поняли, что, сосредоточив воздух, который врезается в поршень, мы можем улучшить общую мощность двигателя. Профессор Амир Хаджепур, Университет Ватерлоо

«Большинство новых двигателей имеют форму системы изменения фаз газораспределения (VVT), и есть много преимуществ в изменении фаз газораспределения, когда вы находитесь в разных режимах работы двигателя», — говорит Хаджепур, чьи исследования с командой фокусируются на на разработку более дешевых и экологически чистых двигателей.Вы можете получить более высокий крутящий момент или более высокую скорость, или добиться лучшей производительности в других ситуациях, в которых может находиться двигатель ».

Проблема в том, что клапаны обычно управляются кулачком и не могут свободно регулироваться. Большинство систем VVT можно менять только через определенные промежутки времени. Например, их можно переключать только между предварительно установленными настройками, или пользователь может изменять только их обе одновременно. Другими словами, пользователь не может самостоятельно вносить изменения в настройки открытия и закрытия.Это ограничивает возможность точной настройки двигателя.

Khajepour взял эту существующую функциональность и сделал ее полностью регулируемой, заменив кулачки на гидроцилиндры и поворотные гидравлические параметры. Это позволит инженерам настраивать как время открытия, так и время закрытия впускных и выпускных клапанов, чтобы лучше регулировать топливную эффективность, создавая двигатели, которые дешевле в топливе и выделяют меньше углерода.

«Когда мы сравнили начальные фазы газораспределения с оптимальными фазами газораспределения, мы поняли, что, сосредоточив воздух, который врезается в поршень, мы можем улучшить общую мощность двигателя», — говорит Хаджепур, объясняя, что показатель повышения эффективности на 10 процентов может быть только началом этой технологии.«Я уверен, что эффективность можно было бы даже повысить еще больше в общем ездовом цикле, потому что сейчас мы смотрим на гораздо более широкие операции [включая вождение с остановками и вождение по шоссе], а не просто одна операция ».

Узнайте в Часть 2 Как Хаджепур и его команда решили эту проблему.

Тим Спринкл — независимый писатель.

Подробнее о проектировании и производстве:
Креативный подход к проектированию улучшает оценки
Нанотехнология обеспечивает безопасные литий-ионные батареи
Блокчейн может изменить лицо производства

Основы работы с двигателем

Основы работы с двигателем

Ханну Яэскеляйнен, Магди К.Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Аннотация : Поршневые двигатели внутреннего сгорания — подкласс тепловых двигателей — могут работать в четырех- и двухтактных циклах. В каждом случае двигатель может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI). Возможен ряд других классификаций двигателей на основе мобильности двигателя, применения, топлива, конфигурации и других параметров конструкции.Теоретически процесс сгорания можно смоделировать, применяя законы сохранения массы и энергии к процессам в цилиндре двигателя. Основные конструктивные и рабочие параметры двигателей внутреннего сгорания включают степень сжатия, рабочий объем, зазор, выходную мощность, указанную мощность, термический КПД, указанное среднее эффективное давление, среднее эффективное давление при торможении, удельный расход топлива и многое другое.

Тепловые двигатели

Определение и классификация

Тепловые двигатели — это машины преобразования энергии — они преобразуют химическую энергию топлива в работу, сжигая топливо в воздухе для производства тепла.Это тепло используется для повышения температуры и давления рабочего тела, которое затем используется для выполнения полезной работы. Тепловые двигатели можно классифицировать как:

  1. Двигатели внутреннего сгорания, или
  2. Двигатели внешнего сгорания.

Их также можно разделить на возвратно-поступательные и вращательные. В поршневых двигателях рабочая жидкость используется для линейного перемещения поршня. Затем поступательное движение обычно преобразуется во вращательное с помощью кривошипно-скользящего механизма (шатун / коленчатый вал).В роторном двигателе рабочая жидкость вращает ротор, соединенный с выходным валом.

Двигатели внутреннего сгорания

В двигателях внутреннего сгорания (ДВС) рабочее тело состоит из воздуха, топливовоздушной смеси или продуктов сгорания самой топливно-воздушной смеси. Поршневые двигатели с возвратно-поступательным движением являются, пожалуй, наиболее распространенной формой известных двигателей внутреннего сгорания. Они приводят в действие автомобили, грузовики, поезда и большинство морских судов. Они также используются во многих небольших служебных приложениях.Они могут работать на жидком топливе, таком как бензин и дизельное топливо, или на газообразном топливе, таком как природный газ и сжиженный нефтяной газ. Двумя общими подкатегориями поршневых двигателей с возвратно-поступательным движением являются двухтактный двигатель и четырехтактный двигатель . Примеры роторных двигателей внутреннего сгорания включают роторный двигатель Ванкеля и газовую турбину.

Общие цели при проектировании и разработке всех тепловых двигателей включают: максимизацию работы (выходную мощность), минимизацию потребления энергии и уменьшение загрязняющих веществ, которые могут образовываться в процессе преобразования химической энергии в работу.На рисунке 1 показаны основные узлы поршневых двигателей внутреннего сгорания. Конструкция магистрального двигателя является наиболее распространенной, хотя термин «магистральный двигатель» редко используется за пределами отрасли крупных двигателей. Конструкция крейцкопфа в настоящее время используется только в больших тихоходных двухтактных двигателях. Впускные и выпускные клапаны опущены для простоты, однако стоит отметить, что в некоторых конструкциях двухтактных двигателей используются впускные и выпускные отверстия, а не клапаны.

Рисунок 1 . Основные узлы поршневых (а) и крейцкопфных (б) двигателей

Как двух-, так и четырехтактный поршневой двигатель внутреннего сгорания может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI).

Обычно системы с искровым зажиганием характеризуются предварительно смешанным зарядом (т.е. топливо и воздух смешиваются перед зажиганием) и внешним источником зажигания, таким как свеча зажигания. Предварительное смешивание может происходить во впускном коллекторе или в цилиндре. Хотя предварительно смешанный заряд имеет относительно однородное пространственное распределение воздуха и топлива в большинстве случаев, это распределение также может быть неоднородным. Возгорание инициируется искрой, и пламя распространяется наружу вдоль фронта от места искры.Сгорание в двигателях SI считается кинетическим, потому что вся смесь воспламеняется, а скорость сгорания определяется тем, насколько быстро химическая реакция может потреблять эту смесь, начиная с источника воспламенения.

Обычные дизельные двигатели характеризуются впрыском топлива непосредственно в цилиндр примерно в то время, когда требуется зажигание. В результате заправка воздуха и топлива в этих двигателях очень неоднородна: одни регионы являются чрезмерно богатыми, а другие — обедненными.Между этими крайностями смесь топлива и воздуха будет существовать в различных пропорциях. При впрыске топливо испаряется в этой высокотемпературной среде и смешивается с горячим окружающим воздухом в камере сгорания. Температура испарившегося топлива достигает температуры самовоспламенения и самовоспламеняется, чтобы начать процесс сгорания. Температура самовоспламенения топлива зависит от его химического состава. В отличие от системы SI, сгорание в двигателях с воспламенением от сжатия может происходить во многих точках, где соотношение воздух-топливо и температура могут поддерживать этот процесс.Говорят, что основная часть процесса сгорания в двигателях с ХИ регулируется смешиванием, потому что скорость регулируется образованием воспламеняющихся смесей воздуха и топлива в камере сгорания.

В некоторых случаях различие между модулями SI и CI может быть нечетким. Из-за необходимости сокращения выбросов и расхода топлива были разработаны системы сгорания, которые могут использовать некоторые особенности двигателей SI и CI; например, самовозгорание предварительно смешанных смесей бензина, дизельного топлива или их смеси.

Газовые турбины, рис. 2, являются еще одним примером двигателей внутреннего сгорания. Однако, в отличие от поршневых двигателей с возвратно-поступательным движением, сгорание происходит отдельно в специальной камере сгорания.

Рисунок 2 . Микрогазовая турбина для расширителей диапазона в транспортных средствах средней и большой грузоподъемности

(Источник: Wrightspeed Inc.)

Двигатели внешнего сгорания

В двигателях внешнего сгорания рабочее тело полностью отделено от топливовоздушной смеси.Тепло от продуктов сгорания передается рабочему телу через стенки теплообменника. Паровая машина — хорошо известный пример двигателя внешнего сгорания.

Примером поршневого двигателя внешнего сгорания является двигатель Стирлинга, в котором тепло добавляется к рабочему телу при высокой температуре и отводится при низкой температуре. Тепло, добавляемое к рабочему телу, может быть получено практически от любого источника тепла, такого как сжигание ископаемого топлива, дерева или любого другого органического материала.

Цикл Ренкина, на котором основаны многие конструкции паровых двигателей, является еще одним примером двигателя внешнего сгорания. Тепло, поступающее от внешнего источника, повышает температуру жидкости, такой как вода, до тех пор, пока она не превратится в пар, который используется для перемещения поршня или вращения турбины. Паровые двигатели приводили в движение автомобили в США с 1900 по 1916 год; однако к 1924 году они почти исчезли. Паровые грузовики были популярны в Англии до середины 1930-х годов. В то время как паровые локомотивы во многих странах постепенно заменялись тепловозами на протяжении большей части 20 -го -го века, некоторые из них оставались в эксплуатации до 21-го -го -го века.Причины отказа от парового двигателя как основного двигателя в мобильных приложениях заключались в размере и количестве основных компонентов, необходимых для их работы, таких как печь, котел, турбина, клапаны, а также в их сложных элементах управления [422] . Паровая турбина, которая до сих пор работает на многих стационарных электростанциях, является примером роторного двигателя внешнего сгорания.

В 21 веке и гг. Акцент на повышении эффективности двигателей вызвал новый интерес к циклу Ренкина для мобильных приложений — в форме рекуперации отработанного тепла выхлопных газов (WHR).В то время как в некоторых из этих устройств используется пар, в других используются органические жидкости, которые лучше подходят для применений с относительно низкой температурой выхлопных газов автомобилей. Из-за комбинации цикла Ренкина и органической рабочей жидкости эти системы часто называют системами рекуперации отходящего тепла с органическим циклом Ренкина (ORC).

###

Как работают автомобильные двигатели | HowStuffWorks

Используя всю эту информацию, вы можете начать понимать, что существует множество различных способов улучшить работу движка.Производители автомобилей постоянно играют со всеми перечисленными ниже параметрами, чтобы сделать двигатель более мощным и / или более экономичным.

Увеличьте рабочий объем: Чем больше рабочий объем, тем больше мощность, потому что вы можете сжигать больше газа за каждый оборот двигателя. Вы можете увеличить рабочий объем, увеличив цилиндры или добавив больше цилиндров. Двенадцать цилиндров кажутся практическим пределом.

Увеличьте степень сжатия: Чем выше степень сжатия, тем больше мощность, до определенного предела.Однако чем сильнее вы сжимаете топливно-воздушную смесь, тем больше вероятность самопроизвольного воспламенения (до того, как свеча зажигания воспламенит его). Бензины с более высоким октановым числом предотвращают такое преждевременное сгорание. Вот почему высокопроизводительным автомобилям обычно нужен высокооктановый бензин — их двигатели используют более высокую степень сжатия, чтобы получить больше мощности.

Добавьте больше в каждый цилиндр: Если вы можете втиснуть больше воздуха (и, следовательно, топлива) в цилиндр заданного размера, вы можете получить больше мощности от цилиндра (точно так же, как если бы вы увеличили размер цилиндр) без увеличения количества топлива, необходимого для сгорания.Турбокомпрессоры и нагнетатели сжимают входящий воздух, чтобы эффективно втиснуть больше воздуха в цилиндр.

Охлаждение поступающего воздуха: Сжатие воздуха повышает его температуру. Однако вы хотите, чтобы в цилиндре был как можно более холодный воздух, потому что чем горячее воздух, тем меньше он будет расширяться при сгорании. Поэтому многие автомобили с турбонаддувом и наддувом имеют интеркулер . Интеркулер — это специальный радиатор, через который проходит сжатый воздух, чтобы охладить его перед попаданием в цилиндр.

Позвольте воздуху поступать легче: Когда поршень опускается на такте впуска, сопротивление воздуха может лишить двигатель мощности. Сопротивление воздуха можно значительно уменьшить, поместив по два впускных клапана в каждый цилиндр. В некоторых новых автомобилях также используются полированные впускные коллекторы для устранения там сопротивления воздуха. Большие воздушные фильтры также могут улучшить воздушный поток.

Упростите выход выхлопных газов: Если сопротивление воздуха затрудняет выход выхлопных газов из цилиндра, это лишает двигатель мощности.Сопротивление воздуха можно уменьшить, добавив второй выпускной клапан к каждому цилиндру. Автомобиль с двумя впускными и двумя выпускными клапанами имеет четыре клапана на цилиндр, что улучшает рабочие характеристики. Когда вы слышите рекламу автомобиля, в которой говорится, что автомобиль имеет четыре цилиндра и 16 клапанов, в рекламе говорится, что двигатель имеет четыре клапана на цилиндр.

Если выхлопная труба слишком мала или глушитель имеет большое сопротивление воздуха, это может вызвать противодавление, которое имеет тот же эффект. В высокоэффективных выхлопных системах используются коллекторы, большие выхлопные трубы и глушители со свободным потоком для устранения противодавления в выхлопной системе.Когда вы слышите, что у автомобиля «двойной выхлоп», цель состоит в том, чтобы улучшить поток выхлопных газов, используя две выхлопные трубы вместо одной.

Сделайте все легче: Легкие детали помогают двигателю работать лучше. Каждый раз, когда поршень меняет направление, он расходует энергию, чтобы остановить движение в одном направлении и запустить его в другом. Чем легче поршень, тем меньше энергии он потребляет. Это приводит к повышению топливной экономичности и производительности.

Впрыск топлива: Впрыск топлива позволяет очень точно дозировать топливо в каждый цилиндр.Это улучшает производительность и экономию топлива.

В следующих разделах мы ответим на некоторые распространенные вопросы, связанные с двигателем, которые задают читатели.

Argonne проводит крупнейшее моделирование потока внутри двигателя внутреннего сгорания.

Представьте себе более эффективные двигатели внутреннего сгорания с меньшими выбросами, созданными с помощью компьютерного моделирования. Ученые Аргоннской национальной лаборатории Министерства энергетики США (DOE) недавно объединили свои усилия для проведения крупнейшего в истории моделирования потока внутри двигателя внутреннего сгорания.Новые идеи могут быть использованы автопроизводителями для разработки более экологичных двигателей.

«Это одна из ключевых вех, и в Аргонне будет больше таких вех», — сказал Сибенду Сом, менеджер группы вычислительной мультифизики Аргоннского подразделения энергетических систем (ES) новаторского моделирования.

Около полутора лет назад Сом и Мухсин Амин, научный сотрудник Центра транспортных исследований в ЕС, придумали идею проведения прямого численного моделирования (DNS), предназначенного для точного решения всех проблем. турбулентный поток масштабируется внутри двигателя внутреннего сгорания.Однако, прежде чем это моделирование могло быть выполнено, необходимо было моделирование меньшего размера, чтобы гарантировать, что самый большой из когда-либо пойдет по плану, сказал Амин.

«Это одна из ключевых вех, и из Аргонна таких вех будет еще больше». — Сибенду Сом, руководитель отдела вычислительной мультифизики Аргоннской группы в подразделении энергетических систем

Поскольку моделирование может предоставить более подробное представление о турбулентном потоке, производители автомобилей полагаются на них при оценке нескольких потенциальных конструкций двигателей и определении лучших из них, но их ресурсы ограничены.

Выполнение моделирования в таком большом масштабе требует больших и лучших ресурсов, таких как суперкомпьютер Theta в Argonne Leadership Computing Facility (ALCF), пользовательском центре Министерства энергетики США.

Это снимок небольшой подготовительной симуляции. Он показывает распределение значений скорости на двух плоскостях зажима через цилиндр. (Изображение Аргоннской национальной лаборатории.)

Амин и Сом сотрудничали с Саумилом Пателем, младшим научным сотрудником отдела вычислительной науки Аргонны, который помогал с предварительной и последующей обработкой, а также в разработке алгоритмов.

Летом 2019 года с помощью Пателя Амин получила вычислительное время на Theta в рамках конкурса Leadership Computing Challenge Министерства энергетики США (Advanced Scientific Computing Research, ASCR).

Расчеты по Theta были выполнены с помощью кода теплового моделирования жидкости Nek5000 компании Argonne, который был отмечен премией Гордона Белла за выдающуюся масштабируемость на высокопроизводительных параллельных компьютерах в 1999 году.

Современный Nek5000, масштабируемый до миллионов процессоров, был разработан в основном в Аргонне.Новая версия, NekRS, находится в стадии разработки для компьютеров на базе ускорителей и поддерживается Центром эффективной экзадачной дискретизации, который является частью проекта министерства энергетики по эксафлопсным вычислениям.

С главным архитектором Nek5000 Полом Фишером консультировались на ранних этапах разработки настоящих расчетов. Фишер — старший научный сотрудник отдела математики и информатики Аргонны и профессор кафедры информатики и механики и инженерии Иллинойского университета в Урбана-Шампейн.

После многих лет работы по адаптации Nek5000 для улучшенного моделирования сгорания, этой весной ученые выполнили DNS потока внутри двигателя внутреннего сгорания.

«Текущее моделирование является первым в истории прямым численным моделированием потока и теплопередачи внутри двигателя внутреннего сгорания для реальной геометрии двигателя и условий эксплуатации», — сказал Амин.

Это моделирование потребовало решения 2 миллиардов степеней свободы, которые отслеживают такие параметры, как скорость, давление и температура, на 51 328 ядрах суперкомпьютера Theta.

«Это одно из наиболее подробных имитаций потока в двигателе внутреннего сгорания», — сказал Амин.

Набор данных DNS, созданный в результате текущей работы, будет полезен производителям автомобилей по-разному. Подробная информация о распределении скорости, давления и температуры в двигателе осветит процессы в цилиндре, которые недоступны для экспериментов или моделирования с низкой точностью. Кроме того, набор данных будет служить эталоном моделирования, который разработчики машинных моделей могут использовать для оценки и повышения точности инженерных подмоделей.

Исследование может также принести пользу компаниям, производящим двигатели большой мощности.

Этот проект финансировался Управлением по энергоэффективности и возобновляемым источникам энергии Министерства энергетики США и Управлением транспортных технологий под эгидой консорциума «Партнерство по усовершенствованным двигателям внутреннего сгорания».

Свод правил Калифорнии, раздел 8, раздел 6554. Стационарный двигатель внутреннего сгорания, приводящий в движение воздушные или газовые компрессоры.

Эта информация предоставляется бесплатно Департаментом производственных отношений. со своего веб-сайта www.dir.ca.gov. Эти правила предназначены для удобство пользователя, и не дается никаких заверений или гарантий, что информация актуален или точен. См. Полный отказ от ответственности на странице https://www.dir.ca.gov/od_pub/disclaimer.html.

Подраздел 14. Приказ о нефтяной безопасности — бурение и добыча
Статья 16. Газовые компрессоры и двигатели

.

(a) Воздушные и газовые компрессорные двигатели мощностью более тридцати (30) лошадиных сил должны быть снабжены средствами запуска, кроме ручного.Ручной запуск разрешен только в экстренных случаях.

(b) В здании газового компрессора или в зданиях, где может происходить скопление горючих газов, нельзя манипулировать системами зажигания двигателя внутреннего сгорания или проводами таким образом, чтобы это могло вызвать открытую искру, если испытания не показывают, что содержание горючего газа или пара в атмосфере составляет менее двадцати процентов (20%) от нижнего предела взрываемости.

(c) Краны цилиндров двигателей внутреннего сгорания не должны открываться в любое время, когда пламя или искра могут выходить из крана баллона в газокомпрессорную комнату или в здания, где может происходить скопление горючих газов, за исключением случаев, когда испытания показывают, что содержание горючего газа или пара в атмосфере составляет менее двадцати процентов (20%) от нижнего предела взрываемости.

(d) В дополнение к дроссельной заслонке должны быть предусмотрены другие средства с использованием одного или нескольких клапанов, заглушек или других средств, обеспечивающих эквивалентную безопасность, для предотвращения попадания топливного газа в цилиндры и срабатывания движущихся частей во время проведения работ по техническому обслуживанию. выполняются на двигателе внутреннего сгорания или на оборудовании, подключенном к двигателю и приводимом в действие, когда такие работы по техническому обслуживанию в противном случае могут подвергнуть работника возможной травме.

(e) Главный трубопровод топливного газа к газокомпрессорным двигателям и другим двигателям внутреннего сгорания, расположенным в зданиях газоперекачивающих агрегатов, должен быть оборудован подходящим главным запорным клапаном, расположенным вне здания, но в любом случае на разумном расстоянии от двигателя. .

f) В двигателе или в пусковой воздушной магистрали рядом с каждым цилиндром двигателя внутреннего сгорания должен быть предусмотрен обратный клапан, использующий сжатый воздух в качестве средства запуска.

(g) Подача сжатого воздуха для пуска двигателя не должна функционировать таким образом во время проведения работ по техническому обслуживанию двигателя внутреннего сгорания, работающего на холостом ходу, или оборудования, подключенного к двигателю и приводимого в действие двигателем, когда такие работы по техническому обслуживанию характер, что сотрудники могут быть подвергнуты опасности, если пусковой воздух заставит двигатель двигаться или переворачиваться.Это может быть выполнено одним из следующих способов:

(1) Отсоединение штуцера пусковой воздушной линии и выверка трубы.

(2) Наличие двух закрытых клапанов в линии пускового воздуха с открытым тройником между ними, имеющим пропускную способность, равную пропускной способности линии пускового воздуха.

(3) Другие средства, обеспечивающие столь же эффективную положительную защиту, как (1) или (2) выше.

(h) (1) В дополнение к регулятору, контролирующему подачу топлива, на стационарных двигателях внутреннего сгорания, оборудованных внешними маховиками и приводящих в действие газовые компрессоры, должен быть установлен регулятор превышения скорости или регулятор превышения скорости, работающий для отключения зажигания двигателя. .

(2) На приводных двигателях компрессора с турбонаддувом регулятор превышения скорости должен также отключать подачу топлива. Двигатели внутреннего сгорания, в которых маховик установлен в корпусе двигателя как неотъемлемая часть двигателя, не включаются в этот заказ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *