Posted in: Разное

Двс какой: ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ • Большая российская энциклопедия

Содержание

О двигателе внутреннего сгорания : Кафедра ДВС : АлтГТУ

Весьма скромный по габаритам, малютка в сравнении с такими монстрами энергетики, как гидравлические, тепловые и атомные станции, но далеко не простой по конструкции, впитавший в себя все лучшие мировые достижения в технологиях, материалах, нефтехимии, гидравлики, электротехники и электроники, двигатель внутреннего сгорания обеспечивает более 90% от суммарного объема мощности всех установленных энергетических агрегатов мира.

На первый взгляд, это феномен, так как мощность единичного ДВС относительно невысокая: от десятой доли киловатта до десятков тысяч. Но никакого феномена нет. Двигатель весьма востребован в деятельности человека и берет фантастическими объемами, массовостью производства. Он всюду — где человек, там и он. На земле и под землей, на воде и под водой, в околоземном пространстве и в космосе. Нет сферы деятельности человека, где бы не использовался ДВС, и в этом его первая особенность.

Вторая особенность в том, что именно ДВС, осуществляя энергообеспечение машин и механизмов, на которые он устанавливается, главным образом и обеспечивает качество и прогресс в развитии этой техники. Легендарный танк Т-34 времен Великой Отечественной войны стал эталоном боевых машин благодаря установленному на нем дизелю Д-12, производство которого осуществлялось и на барнаульском заводе «Трансмаш». Современный легковой автомобиль стал таким, какой он есть: экономичным, надежным, комфортным, безопасным, динамичным, эргономичным благодаря значительным успехам, достигнутым в конце прошлого и начале нынешнего столетия в развитии двигателестроения. Газотурбинный регулируемый и динамический наддув, непосредственный впрыск бензина, многоклапанные системы газораспределения с изменяемыми фазами, рециркуляция отработавших газов, электронные системы управления, гибридные двигатели (ДВС + электрическая машина)  — вот далеко не полный перечень мероприятий, которые позволили современному ДВС обеспечить жесткие требования ЕВРО по удельной мощности и вредным выбросам, по расходу топлива и масла, приемистости, экономичности мобильных машин. Шестьдесят киловатт мощности с литра объема цилиндра дизеля (в бензиновых еще выше), менее четырех литров топлива на 100 км пробега, разгон до 100 км/час менее чем за 5 секунд. 

Но это не предел — эволюционное развитие двигателя продолжается. Впереди новые задачи, среди них — расширение создания гибридных двигателей, использование водорода как топлива, адаптация двигателя к работе на биологическом топливе и др.

Вы, нынешние абитуриенты, а затем студенты — бакалавры и магистры, будете их решать и решите, ведь прогресс в энергетике остановить невозможно.

Мотор в будущее – Огонек № 31 (5527) от 20.08.2018

У двигателя внутреннего сгорания, без которого невозможно представить современный транспорт, юбилей — 195 лет. Однако полноценной замены имениннику так и не изобрели

Современный автомобиль, каким мы его знаем, рождался, наверное, целый век, и каждый из его дней рождения — исторический. Судите сами: 125 лет назад двумя венгерскими учеными, Донатом Банки и Яношем Чонка, запатентован карбюратор — устройство, где готовится горючая смесь для автомобильного двигателя. Долгое время его изобретателем вообще-то считался немец Вильгельм Майбах, запатентовавший карбюратор раньше венгерских коллег, и лишь после специальной экспертизы выяснилось — Банки и Чонка опередили его с публикацией. Счет шел на месяцы!

Но, пожалуй, еще важнее другая дата: в 1823 году, то есть 195 лет назад, другой инженер, британец Сэмуэль Браун, запатентовал первый получивший успех и коммерческое приложение двигатель внутреннего сгорания (ДВС)! Оговоримся: и на этот почетный титул — изобретателя ДВС — также претендует множество инженеров, выбирай любого. Вот, к примеру, один из претендентов — француз Жозеф Нисефор Ньепс больше известный как один из изобретателей фотографии. Он еще в 1807 году вместе с братом создал прототип ДВС, названный пирэолофором. Пирэолофор был установлен на корабль и успешно испытан, после чего братьям выдали патент, подписанный самим Наполеоном. Был в истории ДВС и русский след: бензиновый двигатель внутреннего сгорания с электрическим зажиганием — разработка российского конструктора сербского происхождения Огнеслава Костовича, известного проектами дирижабля, вертолета и даже рыбы-лодки.

Парадокс в другом: ни один из изобретателей этого чуда техники не был уверен, что его усилия пригодятся. Сегодня об этом уже не помнят, но с ДВС тогда конкурировали паровой и… электрический двигатель, изобретенный еще в 1828 году!

— Период, когда люди выбирали тип двигателя для безлошадных повозок (так называемое осевое время автомобилизма), пришелся как раз на конец XIX века,— говорит шеф-редактор журнала «Авторевю» Леонид Голованов.— Так вот, вплоть до середины 1900-х параллельно выпускались машины со всеми тремя типами силовых установок: ДВС, электроприводом и паровым двигателем. В результате победил двигатель внутреннего сгорания, причем заслуженно — он оказался эффективнее, проще в эксплуатации и более пригоден для массового производства. Но главное — сочетание энергоемкости, цены и скорости заправки, которое обеспечивало моторное топливо. Альтернативы этому не было!

О «нефтяном факторе» в успехе двигателя внутреннего сгорания говорит и декан транспортного факультета Московского политехнического университета Пабло Итурралде. По его словам, выпуск машин на ДВС в начале ХХ века получил поддержку у нефтяной отрасли — ей нужен был мощный потребитель производимой продукции, и автомобили, работающие на бензине, идеально подошли для этого.

Парадокс нынешнего момента, впрочем, в другом: топливо, которое когда-то помогло двигателю внутреннего сгорания победить конкурентов, сегодня может… его похоронить.

Разберемся.

«Топливо-изгой», «Европа отказывается от двигателей внутреннего сгорания», «Объявлена война дизелю»… Европейские СМИ предупреждают: в Старом Свете решили всерьез взяться за ДВС. Повод нашелся в 2015-м, когда в результате так называемого Дизельгейта выяснилось: крупнейший европейский производитель дизельных моторов занижал количество вредных выбросов во время тестов. И вот время перемен: к примеру, в Великобритании запретить продажи новых автомобилей на бензиновых или дизельных ДВС собираются уже к 2040 году. А Норвегия ставит дедлайн еще раньше — на 2025 год… Чем собираются заменить ДВС? Конечно же, старым добрым электромотором, но и тут все не однозначно.

— Конец ДВС приближают сразу несколько факторов: ужесточившиеся требования к токсичности отработавших газов, истерика по поводу антропогенной природы глобального потепления и, безусловно, электромобили,— уверен Леонид Голованов.— Впрочем, до массового распространения электромобилей еще далеко, и сдерживает его отсутствие аккумуляторных батарей с достаточной энергоемкостью.

Иными словами, современные литий-ионные батареи не способны обеспечить переход на массовую электромобилизацию — нужен качественный скачок, батареи нового типа, например на основе графена. Вот только когда их изобретут… Как открыт и вопрос о перспективах так называемых гибридов — автомобилей, где электродвигатель совмещен с ДВС.

Приговор специалистов: человечество на перепутье. Жить с ДВС больше не хочется, а переходить на электромобили не получается, да и последствия такого перехода никто толком не просчитал.

— Вся инфраструктура наших городов рассчитана под двигатели внутреннего сгорания, и перемены идут с большим трудом: посмотрите на Европу — станции для подзарядки встречаются там гораздо реже, чем автозаправки,— говорит Пабло Итурралде из Московского политеха.— Прибавьте к этому скорость самого процесса — чтобы заправить обычный автомобиль, у вас уйдет пять минут. А для зарядки электромобиля понадобится минимум часа два. Так что переход на новую инфраструктуру в перспективе довольно трудозатратен: всегда есть соблазн потратить эти деньги на что-то другое, например на развитие общественного транспорта.

Леонид Голованов, в свою очередь, уверен, что переход на электромобили неизбежен. Но и он соглашается: последствия такого перехода будут столь масштабны, что сравнить их можно разве что с появлением беспилотных электрических робомобилей. Попробуем представить этот транспорт будущего: никаких дилерских сетей, автозаправочных станций, водителей и даже автослесарей — «умные» машины будут сами «сообщать» в специализированные сервисы о поломках тех или иных систем. Есть и более радикальный взгляд: мол, двигатели будущих робомобилей почти не будут ломаться, а на старомодные ДВС, которые мог разобрать любой мальчишка, мы станем любоваться разве что в музеях. Впрочем, до этого еще надо дожить — или доехать.

Кирилл Журенков


Экспертиза

Преждевременный энтузиазм


Игорь Моржаретто, партнер аналитического агентства «Автостат», автоэксперт

Появление двигателя внутреннего сгорания (ДВС) — это новый этап промышленной революции, перевернувший всю мировую экономику. До этого она пребывала в полусредневековом состоянии, а с появлением двигателя внутреннего сгорания и дешевого автомобиля, который мог доставить товары и грузы по всему миру на дальние расстояния, изменилась коренным образом. Изменилась и жизнь людей. Специалисты называют это транспортной доступностью «по Форду»: появилась возможность купить автомобиль и поехать на нем куда-то.

Так вот, с моей точки зрения, КПД двигателя внутреннего сгорания далеко не исчерпан. За последние 10–20 лет его параметры очень сильно изменились: он стал более экономичным, мощным, экологичным. К сожалению, сейчас сворачиваются дальнейшие разработки по ДВС, особенно по дизелю. Все кричат, что наше светлое будущее — это электродвигатели. Но перспективы есть и в других отраслях, например в нескольких странах работают над водородными топливными элементами. Возможно, какие-то прорывы будут и с двигателем на ядерном топливе…

А вот что касается электромобилей, то с ними еще очень много нерешенных вопросов.

Ключевой из этих вопросов: на сегодняшний день так и не создан аккумулятор, который позволил бы электромобилю на одном заряде проехать большое расстояние в любую погоду.

Сегодня максимум, который он может преодолеть,— это 300 км при теплой погоде и ровной дороге без пробок. Это много, но, к примеру, в условиях России явно недостаточно.

К тому же современные аккумуляторы чудовищно дороги. Если не будет государственной поддержки, электромобиль просто никто не купит: сегодня он стоит в 2,5—3 раза дороже, чем автомобиль с ДВС того же класса. И соответственно, все те продажи, которые идут в мире, происходят при поддержке разных государственных программ. Когда будет создан дешевый и мощный аккумулятор? Никто не знает. Его обещали создать и год, и пять лет назад…

Еще одна принципиальная проблема, связанная с электромобилями, заключается в том, что при выработке электроэнергии все равно расходуется топливо, просто другое. 60 процентов электростанций (а это они вырабатывают электроэнергию, которая используется для зарядки электромобилей.— «О») в мире сегодня, напомню, работает на угле и, соответственно, загрязняют окружающую среду.

Нельзя не упомянуть и об отсутствии программы утилизации аккумуляторов. Одна компания — мировой лидер по производству электромобилей — после 7 лет эксплуатации забирает эти аккумуляторы и предлагает их владельцам частных домов в качестве аварийного источника энергии. То есть утилизировать их не умеют… В общем, как мне кажется, энтузиазм стран и правительств по поводу электромобилей несколько преждевременен: без госпрограмм поддержки все это долго не продержится. А вот прощаться с ДВС я бы не торопился…

Брифинг

Торстен Мюллер-Отвос, гендиректор английской компании, выпускающей автомобили класса люкс

Мы представим электрическую модель в следующем десятилетии, однако не будем спешить убирать ДВС из портфолио. Переход к электрокарам будет постепенным, и какое-то время они пойдут параллельно… Беспилотники станут для нас интересны тогда, когда они будут функциональными, удобными в использовании, не требующими усилий и полностью автономными, то есть тогда, когда они смогут полностью заменить водителя. Вот тогда мы скажем: «Давайте сделаем это».

Источник: «Автопилот Онлайн»

Александр Фертман, директор по науке, технологиям и образованию фонда «Сколково»

Те горизонты, которые сегодня нарисованы в Европе по поводу отказа от двигателя внутреннего сгорания, наводят на мысль, что это серьезный технологический рывок. А главное, что создается огромный рынок.  Новые виды аккумуляторов постоянно разрабатываются, эта тема одна из самых инвестируемых, если не говорить об IT-секторе. И это не только сама батарея, это и система управления. Здесь, кстати, у России действительно есть интересные проекты. Важно не только то, как вам отдает энергию батарея, но и то, как вы управляете ячейками, чтобы ячейки разряжались одновременно, равномерно.

Источник: «Эхо Москвы»

Коджи Нагано, автодизайнер

— Каким будет автомобиль лет через 30?

— Думаю, внешний вид автомобилей будет сильно зависеть от типа двигателя. Но, как и раньше, автомобилю нужен будет кузов, внутреннее пространство, колеса. Если говорить об автомобиле будущего, то есть такая жутко интересная вещь, как 3D-принтер. И я могу себе представить, что скоро каждый человек сможет создать автомобиль у себя дома, просто напечатать именно тот, который нужен ему. Возможно, он нарисует этот автомобиль сам или использует готовый дизайн.

Источник: Autonews

как российский автопром может завоевать мир

Просто один пример, как это будет работать. В сегодняшнем технологическом укладе автомобили BMW, Mercedes, Audi считаются продуктами самой высокой технологии, вершиной современной конструкторской мысли. В каждом из них примерно 1500 трущихся деталей, требующих длинной и фондоёмкой цепочки оборудования для особо точной обработки различных металлов, много подшипников, масел и тд. Это самые сложные и ответственные элементы автомобиля: двигатели, коробки передач, мосты, карданы, тормозные и рулевые системы и т.д. Для производства автомобилей по традиционной технологии добываются миллионы тонн разных видов руды, уголь, производится метал очень сложных составов со строгими физико-химическими характеристиками, требуется оборудование для дорогостоящих процессов литья, прокатки, штамповки, сварки, окраски…Крутится гигантская производственно-технологическая цепочка с миллионами рабочих мест. Так изготавливается любой автомобиль. Именно поэтому господдержка направляется прежде всего производителям с глубокой локализацией. Но… наступает новый технологический уклад. Появляется один из первых образцов-автомобиль Tesla (Model 3). В этом автомобиле ещё только первого поколения нового технологического уклада — кузов композитный, двигатель электрический. Всего 140-150 трущихся деталей. Это означает, что дорогостоящее оборудование заготовительных производств автозаводов (металлургия, кузница, прессовое, арматурное,) и особо точного механообрабатывающего (двигатели, КПП, мосты, карданы) можно сдать в металлолом. Туда же скоро можно отправить сварку и окраску, поскольку композиты и пластики можно окрашивать при приготовлении массы для формования. Mercedes недавно обнародовал, что инвестиции в строительство его завода в России (пока без мощностей по производству двигателей, КПП и других сложных механических узлов и литейного производства) мощностью 25 000 авто в год составили около €300 миллионов. На мощность 100 000 автомобилей (даже бюджетного сегмента) с полным набором локализации производства традиционных узлов и агрегатов потребуются существенно более высокие инвестиции. Это цена пути углубления традиционной технологии для автопрома. Есть над чем задуматься. Но гораздо более существенные и дорогостоящие изменения автопром потребует от других отраслей. С точки зрения нового технологического уклада производства автомобиля, это означает, что автопрому больше в таких масштабах не нужна прежняя металлургия и традиционная металлообработка, радикально меняются требования к продукции таких отраслей, как химия и нефтегазохимия.

Самый большой дизельный двигатель в мире

Сегодня дизельные двигатели используются повсеместно: на тепловозах и грузовиках, судах и тракторах, легковых автомобилях и дизельных электростанциях.

Дизельный двигатель основан на воспламенении в цилиндре распыленного топлива (воспламенение происходит от воздуха, нагретого при сжатии). Дизельный двигатель может использовать низкосортное топливо, выдает высокий вращающий момент при низких оборотах и имеет высокий КПД (40-45%), что делает его экономичнее бензиновых двигателей, где около 70% топлива сгорает, не преобразовываясь в механическую энергию.

Дизельный двигатели могут быть очень большими. Наиболее крупные размеры имеет судовые агрегаты, установленные на больших судах. Но среди этих гигантов выделяется одна модель, которая по праву занимает почетное звание самого большого дизельного двигателя в мире.

Компания Wartsila хорошо известна всем специалистам. Она специализируется на производстве судовых энергетических установок. Одна из них – RTA-96C. Это и есть линейка двигателей, поражающих воображения обывателя.

Технически RTA-96C представляет собой двухтактный турбокомпрессорный двигатель, число цилиндров может варьироваться от 6 до 14. Версия с 14 цилиндрами является крупнейшим поршневым ДВС и устанавливается на крупнотоннажные контейнеровозы. Высота этого двигателя превышает 13 метров, длина – 27 метров, вес – свыше 2,3 тыс. тонн.

Максимальная мощность, которую способен развить этот гигант, равна почти 109 тыс. лошадиных сил. Первым судном, получившим такой двигатель, стала знаменитая «Emma Maersk», которая с вместимостью 11 тыс. TEU совсем недавно была самым большим контейнеровозом в мире.

Диаметр каждого цилиндра составляет почти метр (960 мм) при ходе поршня в 2500 мм. Объем цилиндров равен 25,5 тыс. литров.

Максимальное количество оборотов традиционно небольшое – 102, но крутящий момент при этом развивается свыше 7,5 млн Нм. Удельный расход топлива составляет 3,8 л/с, в час же агрегат «съедает» 13 тыс. литров бункера при максимальной мощности.

КПД этого двигателя-гиганта является самым высоким среди всех произведенных когда-либо дизельных двигателей – более 50%.

Некоторые сравнения, чтобы оценить мощность двигателя: он может обеспечить электроэнергией небольшой город. При 102 оборотов в минуту он производит 80 млн Ватт электроэнергии. Если средняя бытовая электролампа потребляет 60 Вт, 80 миллионов Ватт вполне достаточно для 1,3 млн ламп. Если в среднестатистической квартире одновременно горит 6 осветительных ламп, двигатель будет производить достаточное количество электроэнергии, чтобы осветить 220 тыс. домовладений. Этого достаточно для обеспечения электроэнергией города с 500 тыс. населения.

Коленчатый вал

Стоимость работы двигателя

Двигатель Wartsila-Sulzer RTA96 потребляет 13 тыс. литров топлива в час. Если в барреле нефти 158,76 литра, самый большой двигатель в мире потребляется 81,1 баррелей нефти в час. Если цена на нефть составляет $67/баррель на мировых рынках нефти, то стоимость 1 часа работы двигателя с точки зрения расхода топлива будет составлять $5,4 тыс. в час.

Поршни

Пороховой двигатель — Энергетика и промышленность России — № 14 (90) ноябрь 2007 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 14 (90) ноябрь 2007 года

Двигатель внутреннего сгорания является самым распространенным устройством для преобразования энергии химических топлив в механическую работу. Поршневые ДВС до сих пор прочно удерживают позиции во многих отраслях– они являются практически единственным видом двигателей в автомобильном, речном и морском транспорте.

Однако дальнейшее развитие ДВС сегодня связано с решением насущных топливных и экологических проблем.

Топливо для тепловых двигателей

Существование ДВС неразрывно связано с химическими топливами, сжигаемыми для получения зарядов сжатых рабочих газов. При этом в качестве топлив в обычных двигателях используются горючие органические вещества и воздушный окислитель из атмосферы. Первичным энергоносителем, как известно, считают горючие вещества, хранимые на борту транспортного средства. Доминирует среди них жидкое горючее нефтяного происхождения (бензин, дизтопливо, керосин). Ежегодно двигатели автомобилей потребляют около 1 млрд. тонн нефтяных топлив. Но запасы нефти ограничены и невозобновляемы.

По оценке специалистов, при существующей тенденции потребления, рентабельные месторождения горючих ископаемых будут исчерпаны примерно через 50 лет. Прогнозы специалистов на период «нефтяного голода» отличаются друг от друга, но все они укладываются в диапазон: от «проблематично» до «катастрофично». Однозначным является то, что эра дешевой нефти уже закончилась и стоимость нефтяного топлива будет лишь неуклонно возрастать – так как нефть, добытая из сверхглубоких скважин и на континентальном шельфе, всегда дороже той, которая добывалась в предыдущие годы.

В ближайшее время реальной замены ДВС, по мнению авторов, скорее всего, не предвидится. В связи с этим идет активный поиск альтернативных энергоносителей для использования в качестве моторного топлива. Впрочем, вопрос об альтернативе существующим видам топлива стоял уже с момента появления ДВС – и даже раньше.

Распространение дымного пороха в Европе XIII века и изобретение пушек навели изобретателей на мысль о возможности использования пороха для получения механической энергии. Такие попытки делали Гойтфель (1678 г.) и Гюйгенс (1680 г.).

В 1688 г. Папен продолжил опыты с пороховой машиной Гюйгенса. Эти попытки не привели к успеху.

Изобретатель процесса газификации древесного топлива француз Лебон, оформив патент на получение генераторного газа, в 1801 г. дал дополнение к своему патенту, в котором он описывает принцип газового двигателя внутреннего сгорания. К сожалению, идея Лебона не была реализована.

В 1820 г. в Англии Сесиль описал опыты с двигателем, работающим на водороде.
Известно, что первый серийный двигатель внутреннего сгорания Ленуара (1860 г.), первый четырехтактный двигатель Отто (1878 г.), ставший прообразом современных четырехтактных двигателей, и первый двухтактный двигатель Клерка (1880 г.), – все они работали на искусственном газе, как единственном виде моторного топлива, доступном в то время.

«Оторвать» ДВС от стационарных газовых сетей и сделать возможным применение его в качестве привода транспортных средств позволило сжигание в цилиндрах ДВС жидкого топлива – керосина. Это было сделано Даймлером и его сподвижником Майбахом, создавшим пульверизационный карбюратор (1893 г.), но приоритет создания пульверизационного карбюратора был отдан венгерскому ученому Банки, описавшему принцип работы карбюратора ранее (что было установлено в 30‑х гг. ХХ века).

Отсутствие нефти в Европе привело к разработке технологии каталитического синтеза жидких углеводородов из угля (реакция Фишера–Тропша). Сейчас синтетическое топливо производится на трех заводах в ЮАР, обеспечивая в стране парк автомобилей жидким топливом.

Освоение технологии сжижения попутного нефтяного газа (пропан-бутана С3Н8, С4Н10) и развитие добычи природного газа (метана СН4) привели к созданию надежных систем питания двигателей, в том числе транспортных, газовым топливом.

В качестве моторного топлива используются также спирты – метанол СН3ОН и этанол С2Н5ОН, – как в чистом виде, так и в смесях с бензином, – сокращая потребление последнего и выполняя роль экологически чистых антидетонационных добавок. Спирты производятся в основном из растительного сырья, поэтому их считают «биотопливом». Больших успехов в производстве «моторных» биоспиртов достигла Бразилия – в свое время этот вопрос решался в этой стране как государственная программа.

В некоторых сельскохозяйственных районах, где освоена технология метанового сбраживания отходов, в качестве моторного топлива используется биогаз – метан (70‑80%) в смеси с углекислым газом (20‑30%).

Для дизельных двигателей топливом может служить растительное масло или продукты его обработки метанолом (этанолом) с получением метанольного (этанольного) эфира. Перспективным в этом направлении является использование рапсового масла ввиду высокой масляничности этой культуры. В настоящее время в ряде стран, в частности в Европе, производство рапсового масла и рапсово‑метанольного эфира достигает нескольких тысяч тонн в год.

В последнее время перспективным направлением считается применение водорода. В Германии уже появились водородные заправки и автомобили на водороде, а в США проблема «водородного топлива» решается на уровне национальной программы.
Из приведенного выше краткого анализа можно видеть, что в настоящее время для питания ДВС используется целая гамма первичных энергоносителей, которые можно подразделить на две основные группы: жидкие и газообразные. Из опыта эксплуатации известно, что жидкие энергоносители более технологичны и удобны при хранении; системы жидкостного питания двигателей проще и надежнее, а зона их использования значительно шире, чем газовых двигателей.

Все рассмотренные типы ДВС на жидком или газовом топливе работают по воздушно-тепловым (газовым) циклам. Это значит, что заряд воздуха-газа {2N2 + ½ O2}, предварительно сжатого в цилиндре, за счет «подвода теплоты» реакций сгорания топлива (окислитель – кислород воздуха), нагревается до 2000‑2500 °С. При этом при нагреве его давление повышается.

Следовательно, химическая энергия топливной смеси вначале преобразуется в термическую, а затем – в потенциальную (сжатого газа). Далее газ, расширяясь, давит на поршень, преобразуя энергию избыточного давления в механическую – которая, в свою очередь, преобразуется из линейного движения поршня во вращательное движение вала двигателя. Диапазон нагрева газов, их термодинамические свойства, степень полезного расширения и сопутствующие потери при преобразовании энергии определяют, в целом, эффективность воздушно-тепловых двигателей: бензиновых ДВС – не более 30‑35%, дизельных ДВС – около 40%.

Принцип порохового цикла

Вернемся к идее порохового двигателя. В принципе, огнестрельные орудия – это пороховые ДВС, преобразующие энергию горячих сжатых рабочих газов из объема заряда в механическую (кинетическую) энергию движения снаряда. Здесь не важно, что процесс выстрела расчленен на отдельные операции, а метаемый снаряд не имеет связи с механизмом преобразования движения.

Процесс преобразования химической энергии порохового заряда происходит по другому принципу, отличному от воздушных циклов ДВС. Порох – разновидность унитарных топлив и взрывчатых веществ, содержащих в составе твердой фазы как окислитель (донор кислорода), так и горючее вещество (реципиент кислорода), способные к экзотермической реакции.

Главная особенность порохового цикла – превращение высокоплотной фазы твердых компонентов заряда в низкоплотную фазу рабочих газов. Это – результат необратимых окислительно-восстановительных реакций «горючее + окислитель = продукты-газы». Масса продуктов‑газов равна массе пороха, поэтому объем пороховых газов будет превышать объем пороха – пропорционально отношению плотностей исходного заряда и газовой фазы.

Исторически первым топливом-порохом был так называемый дымный порох – тонкая смесь порошков калиевой селитры КNO3 (68‑75%), серы (10‑15%) и древесного угля (15‑17%) – первое в эпоху Средневековья вещество, обладавшее неизвестными ранее взрывчатыми свойствами. Высокая скорость сгорания пороха (до 400 м/с) объясняется быстрым проникновением горячих поджигающих газов между частицами пороховой смеси. Эпоха дымного пороха длилась свыше 500 лет, до середины XIX века; за это время не было найдено других порохов, удобных для применения.

Сгорание дымного пороха за счет «встроенного» кислорода калиевой селитры протекает, в основном, по следующему уравнению:
2КNO3 + 3C + S = K2S + 3CO2 + N2.

Температура продуктов вспышки дымного пороха достигает до Т1 = 2100 °С, с выделением до Q = 585 ккал теплоты и до Vн. у. = 280 л газов на 1 кг смеси. Продукты реакции содержат примерно 50% по массе твердых и жидких частиц калиевых солей (K2S, K2CO3, K2SO4), почти не участвующих в работе расширения газов (CO2, N2, СО). Это снижает работоспособность заряда из «слабого» дымного пороха – в сравнении с показателями бездымных порохов на основе пироксилина, имеющего более высокую теплоту сгорания и не содержащего в продуктах твердых остатков (Q = 900 ккал/кг, Vн. у. = 1000 л/кг):
C24h39O9 (ONO2) 11 = 12СО2 + 12СО + 6Н2О (пар) + 8,5Н2 + 5,5N2.

Таким образом, главная физико-химическая особенность пороховых систем как энергоносителей состоит в том, что все топливные компоненты (и горючие, и окислители, и рабочие газы), подобно чрезвычайно сжатой пружине, хранятся при весьма высокой плотности кристаллов и молекулярных связей конденсированной фазы (K-фазы). При возбуждении реакции от искры или капсюля-воспламенителя происходит необратимое экзотермическое фазовое превращение вещества (газораспад), когда объем полученных газов превышает объем исходного заряда примерно в тысячу раз. При сжигании навески бездымного пороха в камере постоянного объема V = const, содержащей n0 моль газов, продукты сгорания (n1 моль) по уравнению состояния газов развивают давление Р1 – пропорционально отношению присутствующих количеств газов в камере после реакции и до нее (n1/n0 >>1), умноженному на отношение их абсолютных температур (Т1/Т0).

Из рассмотренного следует, что на первом этапе (подготовка рабочего заряда) процессы в воздушно-тепловых ДВС отличаются от подготовки стрелкового выстрела. Так, топливная смесь в обычных ДВС готовится из двух компонентов: заряда воздуха-окислителя (более 90‑94%) и дозы горючего (менее 6‑10%). Поскольку плотность газов мала, весь воздушный окислитель (все газы) перед сжиганием топливной смеси предварительно сильно сжимают.

В «пороховом» сценарии необходимости в такте сжатия нет. Плотность порохов – «уже» на 3 порядка выше плотности газов. Монотопливо‑порох при плотности 1 г/см3 будет эквивалентно 700-кратно сжатому заряду воздуха с добавкой нефтяного горючего. На этапе сжигания зарядов процессы энерговыделения также идут различно. Сжигая в камере V пороховой заряд, мы получим более высокое начальное давление газов по сравнению с давлением вспышки сжатой воздушно-нефтяной смеси той же массы m и калорийности Q.

Дело в том, что сгорающая пороховая масса образует новые газы, которых ранее не было ,– в дополнение к уже присутствующим (или сжатым) газам в надпоршневом объеме V цилиндра ДВС. Но при сгорании воздушно-нефтяной смеси число молей продуктов воздушного сгорания почти не отличается от числа молей исходного воздуха (n1/n0 ~ 1), поскольку кислород воздуха О2 расходуется на образование оксидов Н2О и СО2. В итоге при одинаковой калорийности зарядов Q (и одинаковой температуре сгорания Т1) начальное давление газов в пороховом цилиндре может быть намного выше. После окончания сгорания термодинамические процессы в такте расширения будут примерно одинаковы, но с учетом более высокого давления Р1 пороховых газов полезная работа продуктов сгорания топлива-пороха может быть существенно выше работы «термического» расширения газов в цилиндрах воздушно-тепловых ДВС.

Таким образом, пороховой цикл не «привязан» к воздушному окислителю, процессам впуска и сжатия в цилиндрах ДВС. С учетом высокого газообразования и более высокой калорийности пороховых навесок (Q ~ 900 кал/г) по сравнению с той же массой воздушно-нефтяной смеси (Q = 630 кал/г) эффективность пороховых двигателей может намного превосходить мощностные показатели обычных ДВС.

Современные пороховые системы

Пороховые системы настоящего времени отличаются более сложным составом. Сегодня разрабатываются даже технологии жидких метательных монотоплив для артиллерии (не считая «давно известных» взрывчатых веществ с близким химическим составом). Но суть твердых или жидких энергонасыщенных систем остается прежней: пороха, ракетные топлива и пиротехнические смеси – это концентрированные носители и рабочих тел, и химической энергии «окислитель + горючее». Как правило, активный кислород в таких энергона-сыщенных системах закреплен в азотных соединениях (в солях-нитратах NO3- и нитросоединениях R – NO2), где его связи с азотом менее прочные, чем вновь образуемые связи кислорода с водородом (Н2О) и углеродом (СО2, СО).

Возможность использования пороховых систем как моторных топлив для двигателей ограничена тем же признаком, который препятствовал этому и на заре создания ДВС. А именно – сложностью подачи цикловой порции (дозы) твердого топлива в реакционную камеру цилиндра. Кроме того, сухие пороховые смеси чрезвычайно пожароопасны; продукты сгорания многих энергонасыщенных систем – весьма неэкологичны; стоимость порохов – весьма и весьма велика.

Свойство некоторых азотных соединений, богатых кислородом, отдавать последний (кислород) для окисления горючих веществ, используется для форсирования некоторых ДВС на обычном жидком топливе. Так, еще в 1930‑е годы, решая вопрос кратковременного увеличения мощности бензиновых авиадвигателей самолетов на большой высоте, использовали введение в цилиндры жидкой закиси азота N2О. При вспышке бензино-воздушной смеси закись азота легко распадается в цилиндрах ДВС на азот и свободный кислород:
N2O = N2 + ½ O2.

Реакция распада закиси азота – экзотермическая (Q = 445 ккал/кг), с образованием новых газов (Vн. у. = 763 л/кг). Кроме того, массовая доля кислорода в продуктах распада N2O составляет 36%, что в 1,6 раза выше содержания кислорода (23%) в воздушном окислителе {2N2 + ½ O2}. Избыток кислорода в цилиндрах (по аналогии с «наддувом» двигателя) позволяет увеличить подачу горючего–бензина, чем достигается форсирование ДВС, потребляющего часть окислителя из жидкой фазы N2O, не требующей затрат на работу сжатия. В настоящее время в спортивном тюнинге автомобильных двигателей, наряду с подсадками закиси азота (технология фирмы «NOS»), применяют добавки в бензин растворимых окислительсодержащих нитросоединений: нитробензол, нитрометан, нитропропан. Механизм действия нитроприсадок аналогичен форсирующей подсадке закиси азота: часть кислорода для сгорания топливного заряда несут в себе сами нитросоединения, где атомы окислителя «хранятся» в непрочных связях нитрогрупп NO2 в жидкой фазе топливного раствора. Широко этот метод не используется, так как нитроприсадки токсичны и дороги, некоторые из них в индивидуальном виде взрывоопасны.

В ракетной, космической и оборонной технике известны смесевые топлива на основе соединений азота, содержащие и горючие компоненты, и окислители в твердой, жидкой или гелеобразной фазе.

Исследования процессов горения в середине ХХ века показали, что сгорание многих жидких смесей «горючее + окислитель» склонно к самоускорению с возмущением и турбулизацией горящей поверхности (эффект Ландау). В то же время твердые ракетные топлива могут содержать десятки процентов бризантных взрывчатых веществ (тротил, гексоген, нитроглицерин и др.), но не детонировать, а лишь гореть при высокой плотности (до 1,7‑2,0 г/см3) твердотопливного монозаряда. Применение жидких ракетных топлив в обычной наземной технике практически исключено – по причине пожаро- и взрывоопасности компонентов, токсичности и дороговизны (примером могут служить гидразиновые топлива и гептил космических ракет). Но заметим, что при обязательном условии безопасности и дешевизны возможных энергона-сыщенных композиций именно жидкая форма энергоносителя обеспечивала бы необходимую технологичность.

Варианты использования азотных топлив

Азотные энергоносители могут использоваться в поршневых, роторных и газотурбинных двигателях. Однако такие двигатели должны быть адаптированы к особенностям азотных топлив. Впрочем, это не исключительная особенность азотных топлив: бензиновые, дизельные, газовые двигатели также имеют свои особенности, характерные для используемого вида топлива. Остановимся на поршневых двигателях.

При использовании сбалансированных по кислороду сплавов топливных стехиометрий или их растворов может быть применен двухтактный цикл без впуска воздуха (подобный цикл используется, например, в поршневых двигателях морских торпед). Более широкие возможности по диапазону рабочих температур и хранению топлива в жидкой фазе имеют водно‑солевые и водно-аммиачные растворы-эвтоники азотных компонентов. В этом случае топливная масса будет содержать 2‑4 -кратный избыток горючих веществ (без использования специальных компонентов). Здесь должен применяться двухтактный цикл с впуском и сжатием воздуха, но количество воздуха в таком случае требуется меньшее (до 10‑15 раз) по сравнению с подобными циклами на нефтяном топливе, так как часть окислителя содержится в топливной смеси. Следовательно, затраты энергии на предварительное сжатие воздуха для сжигания окислительсодержащих азотных топлив будут меньшими. Учитывая, что для быстрого разложения топливного окислителя-АС необходима температура не менее 300 оС, а объем цикловой дозы и теплоемкость азотных топлив выше, чем нефтепродуктов по дизельному циклу,  теплоты сжатого воздуха может быть недостаточно для запуска двигателя. Поэтому в пусковом режиме необходимо применять подогреваемую камеру термолиза. Для этого применимы свечи накаливания. В режиме установившейся работы двигателя камера термолиза разогревается за счет теплоты реакций сгорания. С учетом потенциальной энергонасыщенности азотных топлив возможны технические решения организации запуска двигателя без впуска и сжатия воздуха.

Расширение газов в цилиндре «воздушно-порохового» ДВС целесообразно более полное, до давления выпуска, близкого к атмосферному. Расчеты показывают, что при параметрах сжатия и сгорания, близких к показателям обычных воздушно-тепловых ДВС, термический КПД «воздушно-порохового» цикла может достигать 80‑85%.

Теплонапряженность двигателя на водо-нитратных топливах будет существенно ниже ввиду меньших температур процесса (в 1,5‑2 раза) – по сравнению с обычными ДВС на нефтяном топливе. В связи с этим целесообразен отказ от системы жидкостного охлаждения ДВС; необходимый уровень температуры стенок цилиндров обеспечит организация воздушного охлаждения. Соответственно, потери теплоты будут меньшими, а индикаторный КПД цикла ожидается на уровне 70‑75%.

Водо-нитратные растворы не допускают контакта топлива с маслом в связи с возможностью эмульгирования и старения масел, с потерей ими смазывающих свойств. Поэтому кинематическая схема двигателя должна предусматривать крейцкопфный узел в механизме преобразования движения и отделение цилиндра от картера двигателя. В качестве такого варианта может применяться кривошипно-кулисный механизм преобразования движения с линейным движением штока поршня, отделением цилиндра от масляного картера и использованием подпоршневого объема в качестве продувочного насоса в двухтактном цикле. Уплотнение поршня в цилиндре может быть сухим с применением компрессионных колец из железо-графита.

В качестве механизма газораспределения применима клапанно-щелевая схема с выпуском отработавших газов через клапаны в головке цилиндра и впуском продувочного воздуха через окна в средней части цилиндра с поворотной гильзой.

Учитывая особенности кривошипно-кулисного механизма, обладающего более высоким механическим КПД по сравнению с традиционным кривошипно-шатунным механизмом, эффективный КПД двигателя на азотных топливах может быть близок к 70%, что примерно в два раза выше, чем для бензиновых или дизельных двигателей.

Все отмеченные конструктивные особенности двигателя технически реализуемы и позволяют выполнить такой двигатель для использования в нем азотных топлив по обычным машиностроительным технологиям.

Следует учитывать, что по объемному расходу азотного топлива двигатель будет уступать показателям расхода горючего нефтяных ДВС до 2– 2,5 раза. Это может отразиться на емкости топливных баков на автомобиле, но не более. Стоимость единицы механической энергии, произведенной с использованием азотных топлив, по сравнению с эксплуатационными расходами на нефтяные моторные топлива будет снижаться примерно в 3 раза (при существующих мировых ценах на бензин около 1500 долл./т или 1,1 долл./л).

Азотное топливо должно рассматриваться как новое направление в получении и использовании альтернативных, возобновляемых и экологически чистых энергоносителей применительно для автомобильного, железнодорожного, речного, морского транспорта, а также для электроэнергетики (в основном, для автономных и локальных энергоустановок), для привода дорожно‑строительных и подъемно-транспортных машин и механизмов, для привода двигателей механизмов в шахтах и горных выработках, для снабжения сжатым газом пневматического инструмента и механизмов. Но, учитывая, что в современных условиях автомобильный транспорт является основным потребителем энергии химических топлив, именно автомобильная промышленность может и должна одной из первых освоить применение этого перспективного топлива.

Судовой двигатель СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ —

Судовой двигатель

СУДОВОЙ ДВИГАТЕЛЬ

входит в состав судовой энергетической установки. Судовые двигатели различают  на главные судовые

двигатели (обеспечивающие движение судна) и вспомогательные судовые двигатели (для привода электрогенераторов, насосов, вентиляторов и т. п.). В качестве судового двигателя используют двигатели внутреннего сгорания (ДВС – СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ), паровые турбины, и газовые турбины.  Основными характеристиками судовых двигателей являются: большой ресурс, возможность реверсирования, умеренная трудоёмкость технического обслуживания, проводимого в судовых условиях, использование топлива в основном тяжёлых сортов, отсутствие жёстких ограничений по массе и размерам двигателя.

Чаще всего на судах используются ДВС — судовые дизели, обладающие наибольшей экономичностью из всех типов судовых двигателей. На транспортных, промысловых и вспомогательных судах применяются мало-, средне- и высокооборотные дизели с наддувом. Малооборотные судовые двигатели внутреннего сгорания используются как главные двигатели судов различных типов; их агрегатная мощность составляет 2,2—35 Мвт, число цилиндров 5—12, удельный эффективный расход топлива 210—215 г/ (квт×ч), частота вращения 103—225 об / мин. Среднеоборотные судовые двигатели внутреннего сгорания используются преимущественно в качестве главных двигателей судов среднего размера; их мощность достигает 13,2 Мвт, число цилиндров 6—20, эффективный расход топлива 205—210 г/(квт×ч), частота вращения 300—500 об/мин. Высокооборотные судовые двигатели внутреннего сгорания применяются в основном как главные двигатели на малых судах, а также в качестве вспомогательных двигателей на судах всех типов; их агрегатная мощность до 2 Мвт, число цилиндров 12—16, удельный эффективный расход топлива 215—230 г/(квт×ч), частота вращения свыше 500 об/мин.

Паровые турбины по степени распространённости несколько уступают двс; используются в качестве главных двигателей на крупных танкерах, контейнеровозах, газовозах и других судах, а также на судах с ядерной энергетической установкой (см. Атомный ледокол «Ленин»). Применяются также как вспомогательные двигатели. Мощность паротурбинных установок достигает 80 Мвт, удельный эффективный расход топлива 260—300 г/(квт×ч), частота вращения турбины 3000—4000 об/мин.

Газовые турбины в составе судовых двигателей применяются в основном в качестве главных двигателей на военных кораблях, транспортных судах на подводных крыльях и на судах на воздушной подушке. Примером газовых турбин является судовой газотурбинный двигатель. Эксплуатация судовых дизелей— подготовка дизельной установки к действию, пуск дизеля, обслуживание дизеля во время работы, вывод из действия (остановка) дизеля в соответствии с инструкцией завода-изготовителя и Правилами технической эксплуатации (ПТЭ).
РАЗДЕЛ «ОБОРУДОВАНИЕ»    

 


 
«Аппаратдизель», ООО  
Экспорт/импорт оборудования и запасных частей для агрегатов на базе отечественных дизелей размерности 6 ЧН 36/45, 6-8Ч23/30, 6Ч18/22, 3Д6, 4Ч9,5/11, 4Ч12/14 и их ремонтом. Диапазон оборудования базирующегося на этих двигателях: от электростанций больших мощностей 1000 кВт и до судовых установок главных и стационарных.
Роспромснаб  
Филиал ООО «АлтайРОСПРОМСНАБ» занимается материально-техническим снабжением флота.Мы специализируемся на поставке главных и вспомогательных судовых дизелей ЧН 15/18(дизели 3Д6, 3Д12, 7Д6, 7Д12), а также запасных частей к ним. На складе имеются : главные судовые дизели: 3Д6С2; 3Д6Н-235С2; 3Д12А, 3Д12А-1; 3КД12Н-520; 3КД12Н-520Р; ВАЗ-3415. Вспомогательные судовые дизели:7Д6-150; П 7Д6АФ-С2; 7Д12; 7Д12А-1; 1Д6БГС2-301; 1Д12В-300КС2-301.
Двигатель 3Д6, 3Д12, ЯМЗ запасные части  
Предлагаем Вам продукцию ОАО ХК Барнаултрансмаш, Турбомоторный завод : — Промышленные дизели (1Д6Н-250,2Д6Н, 1Д12-400БС,1Д12БС(БМС),2Д12, В2-450,В2-500) применяемые для привода механизмов буровой техники, маневровых тепловозов. — Стационарные дизели (1Д6-150,1Д6БА(БГС), 1Д12В-300), применяемые для привода дизель-генераторов 100-200кВт -Транспортные дизели (Д12А-525,Д12А-525А),применяемые для многоосных тягачей Типа МАЗ-537, 543, 7310, КЗКТ-7428, 74106 — Судовые дизели (3Д6, 3Д12, 7Д6, 7Д12) укомплектованные РРП 150-300 л.с. применяемые как главные и вспомогательные судовые дизели, а также предлагаем весь ассортимент запасных частей ОАО ХК Барнаултрансмаш с хорошим дисконтом. -Судовые дизели ЯМЗ ДРА 90-360 л.с. удовлетворяющих требованиям Российского Речного Регистра.
 
ОПИСАНИЕ ТЕРМИНОВ
Судовой газотурбинный двигатель
CГТД — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Рабочий процесс ГТД может осуществляться с непрерывным сгоранием топлива при постоянном давлении или с прерывистым сгоранием топлива при постоянном объёме.
Основной источник электроэнергии на судах — дизель генератор.

Судовой дизель генератор
СДГ агрегат, состоящий из генератора и дизеля, образованный путём соед. их валов. Осн. достоинства Д.-г. — экономичность и быстрота запуска. Размеры Д.-г. тем меньше, чем больше частота вращения. Однако с ростом частоты вращения падает ресурс дизеля. Поэтому в составе осн. длительно работающих Д.-г. применяются средне-и малооборотные дизели с частотой вращения соотв. 750 и 250 об/мин. Потребление топлива Д.-г. составляет ок. 220-230 г на 1 кВт мощн. в теч. 1ч работы. В качестве генераторов на соврем. судах применяют в большинстве случаев синхронные явнополюсные генераторы с автомат. регуляторами напряжения. Регуляторы в зависимости от отклонения напряжения от установленного значения подают больший или меньший ток в обмотку возбуждения генератора, стабилизируя тем самым напряжение.
Дизель-компрессор судовой
ДКС — уст-во, использующее  хим.энергию топлива для сжатия воздуха и наполнения воздушных баллонов. Представляет собой агрегат, состоящий из одноцилиндрового двухтактного двигателя внутреннего сгорания и поршневого компрессора. Противоположно движущиеся поршни в цилиндре ДВС непосредственно соединены с поршнями компрессора. Д.-к. по конструктивному исполнению и принципу работы близок к свободопоршневому генератору газа. Выпускные газы дизельной части после приведения в действие поршней дизеля и компрессора отводятся в атмосферу. В суд. Д.-к. давление достигает 40 МПа, а их производительность -10 л/мин. Достоинством Д.-к. является независимость его работы от др. суд. оборудования, высокая экономичность расхода энергии на 1л сжатого воздуха и небольшие габариты.  
Если у Вас есть вопросы или Вы хотите стать участником любого из раздела обратитесь к нашим менеджерам: 
«РА Корабел.ру», ООО
тел.+7(812) 458-4452 
сот. +7 (921) 912-0373
[email protected]
skype www.korabel.ru
_____________________
Портал: www.korabel.ru
Журнал: www.korabel.su
Торговая площадка:
www.sudoremont.ru 
Морские сувениры 
https://www.korabel.ru/shop.html 
___________________
https://www.facebook.com/korabel.ru/
https://vk.com/korabelru
https://www.instagram.com/korabel_ru/

Двигатели внутреннего сгорания — Национальный технический университет

Заведующий кафедрой

Пылёв Владимир Александрович

Сайт кафедры

О кафедре

Кафедра двигателей внутреннего сгорания (ДВС) основана в 1930 году. С 1980 года она является базовой среди украинских ВУЗов по моторостроению. За время существования кафедра подготовила более 4000 выпускников. Сегодня на кафедре обучается более 200 студентов. Объем лицензионного набора является одним из наибольших в университете.

Кафедра входит в состав факультета «Транспортного машиностроения».

Заведует кафедрой проректор университета по научной работе, заслуженный деятель науки и техники Украины, лауреат Государственной премии Украины в области науки и техники, академик Академии Высшей школы Украины, лауреат Награды Ярослава Мудрого, доктор технических наук профессор Марченко Андрей Петрович.

На кафедре работает 31 сотрудник, среди которых 5 докторов технических наук, 14кандидатов технических наук, четыре сотрудника имеют звание профессора, 8 -звание доцента. Среди преподавателей кафедры 3 лауреата Государственной премии Украины, 2 лауреата премии Кабинета министров.

Кафедра двигателей внутреннего сгорания НТУ «ХПИ» готовит специалистов по соответствующей специальности для производственно-технической,проектно-конструкторской, организационно-управленческой, а также научно-исследовательской и педагогической деятельности, в направлениях разработки, производства, предпродажной подготовки, эксплуатации и ремонта всех типов ДВС.

На кафедре существует две специализации:

  • Конструирование и производство двигателей внутреннего сгорания;
  • Эксплуатация, диагностика и организация ремонта двигателей внутреннего сгорания.

Выпускникам присваивается квалификация: на уровне бакалавра — бакалавр машиностроения; на уровне специалиста — инженер-машиностроитель, на уровне магистра — профессионал в области.

Учебными планами подготовки студентов предусмотрено преподавание более 40 специальных дисциплин, в том числе «Теоретические основы теплотехники», «Теория ДВС»,«Топлива, масла и охлаждающие жидкости», «Перспективные конструкции двигателей», «Информационные технологии и САПР ДВС», «Современные проблемы и методы математического и компьютерного моделирования», «Прогрессивные технологии изготовления ДВС », «Испытания ДВС», «Современные системы управления и средства диагностики ДВС», «Особенности эксплуатации и ремонта современных ДВС», «Экологичность ДВС», «Энергосбережение в ДВС», «Менеджмент организаций по эксплуатации и ремонту ДВС», «Интеллектуальная собственность».

Обучение ведется в соответствии с новейшими тенденциями развития мирового моторостроения. Специалисты кафедры самостоятельно разрабатывают и внедряют в учебный процесс оригинальные методики обучения. Они ориентированы на уровень подготовки абитуриентов современной средней школы и нацелены на активизацию творческой деятельности студентов. Разработаные методики неоднократно докладывались на методических конференциях, в том числе в МГТУ им. Баумана, Москва, Россия. Для обеспечения учебного процесса специалистами кафедры постоянно издаются и переиздаются учебники, монографии, разнообразная методическая литература. В частности, на кафедре издан уникальный шеститомный учебник «Двигатели внутреннего сгорания», который удостоен высокой награды — Государственной премии Украины.

Кафедра имеет уникальную материально-техническую базу. Общая площадь кафедры около 1700 кв.метров. Она включает аудитории технических средств обучения, класс ЭВМ,лаборатории измерений и топливной аппаратуры, два зала с 16 моторными стендами,где установлены двигатели минитехники, автомобильные, тракторные, танковые,другие специальные двигатели, отсеки тепловозного и судового двигателей. При КП«Харьковское конструкторское бюро двигателестроения» завода им. Малышева действует филиал кафедры.

Студенты кафедры ежегодно принимают участие и занимают призовые места на Всеукраинских конкурсах и олимпиадах. Они неоднократно отмечались наградами на Международном конкурсе «Будущие асы компьютерного 3D-моделирования», проводимого компанией АСКОН г. С-т. Петербург, Россия. Ежегодно студенты кафедры получают патенты на собственные изобретения.

Кафедра гордится своими выдающимися выпускниками. Среди которых 7 заведующих кафедр НТУ«ХПИ» и других ВУЗов Украины, 20 генеральных конструкторов и руководителей ведущих предприятий Украины и СНГ.

Выпускники трудоустраиваются на заводах, в конструкторских бюро, научно-исследовательских институтах, в салонах по продаже автотехники, на автобазах, СТО, машинотракторных станциях, железной дороге, а также на морских и речных судах, объектах стационарной энергетики, предприятиях по добыче и транспортировке нефти и газа.Выпускникам кафедры, которые выказали способности к научно-исследовательской деятельности, предоставляется возможность продолжить обучение в аспирантуре.

Научные направления

Основные научные направления, по которым в настоящее время плодотворно работают студенты, аспиранты, докторанты и научно-педагогические сотрудники кафедры нацелены на исследование и улучшение процессов смесеобразования и сгорания двигателей,улучшения экологических и экономических показателей, обеспечения использования альтернативных топлив и многотопливности, повышение ресурсных характеристик ДВС, использование перспективных материалов и технологий; разработку САПР,новых методик, математических моделей, программного обеспечения.

Возглавляют научные направления профессора А.П. Марченко, В.А. Пылев, В.Г. Дяченко,И.В. Парсаданов.

На базе кафедры ДВС действует Специализированный Ученый совет по защите докторских и кандидатских диссертаций по специальности 05.05.03 — тепловые двигатели. На кафедре защищено 140 кандидатских и 20 докторских диссертаций.

Кафедра издает Всеукраинский научно-технический журнал «Двигатели внутреннего сгорания», в котором сотрудничают известные специалисты по тепловым двигателям Украины и зарубежья.

Ученые кафедры принимают активное участие в Международных конференциях в Украине,России, Литве, Германии. Кафедра является соучредителем и организатором ежегодного Международного конгресса двигателестроителей.

Кафедра поддерживает связи по интеграции научных исследований, учебных программ, обмена преподавателями, студентами с Московским государственным техническим университетом им. Н.Е. Баумана (Россия), Пражским техническим университетом(Чехия), с политехническим университетом г. Кельце (Польша), с университетом Грин-Бей штата Висконсин (США), с Клайпедским университетом (Литва).

Выпускающие специальности и специализации

  • Двигатели внутреннего сгорания

Двигатель внутреннего сгорания — обзор

1 ВВЕДЕНИЕ

Топливная эффективность двигателя внутреннего сгорания может быть увеличена за счет снижения механических потерь, в первую очередь вызванных трением. Использование соответствующих масел снижает трение, увеличивает топливную экономичность и в то же время поддерживает низкий износ. Существует два подхода, с помощью которых можно добиться снижения трения в двигателях внутреннего сгорания: за счет уменьшения вязкости масла, что приводит к снижению трения в режиме смазки жидкой пленкой, и за счет использования присадок, снижающих трение, которые минимизируют трение в смешанной / граничной смазке. режим при контакте неровностей поверхности [1].

Очень важным классом присадок, снижающих трение, широко используемых в составах картерных масел, являются молибденосодержащие соединения, такие как диалкилдитиокарбамат молибдена (MoDTC). Общее количество присадок в масле может составлять от 5 до 25% [2], а эффективность MoDTC в снижении трения сильно зависит от синергетических или антагонистических эффектов с другими присадками, особенно с диалкилдитиофосфатом цинка (ZDDP) [3– 5]. Присадка ZDDP, помимо антиоксидантных свойств, как известно, очень эффективна для защиты поверхностей от износа в условиях граничной смазки; свойства, которые делают его незаменимым ингредиентом в подавляющем большинстве текущих составов масел [6].Поэтому понимание взаимодействия ZDDP и MoDTC в трибологических характеристиках как двух ключевых компонентов масел имеет важное значение для достижения оптимальных характеристик. Предыдущая работа [7] также указала на необходимость усовершенствования математических моделей смазки клапанного механизма, чтобы повысить их чувствительность к характеристикам состава масла. Такие улучшения станут возможными только путем развития лучшего понимания образования трибопленки, структуры, химических и морфологических свойств и их соотнесения с приработкой систем клапанного механизма.

MoDTC зарегистрировано для уменьшения трения за счет образования пленки, содержащей MoS 2 , на металлических поверхностях [8–12]. Было замечено, что трение уменьшилось через определенное время, определяемое как фаза индукции, после чего трение упало с высоких значений примерно 0,12 до уменьшенных значений порядка 0,05. Ямамото и Гондо [9, 13, 14] в своей работе с использованием рентгеновской фотоэлектронной спектроскопии (XPS) предположили, что для образования MoS 2 необходимо предварительное формирование слоя MoO 3 .Было видно, что образование M0S 2 из MoDTC происходит в результате контакта твердое тело-твердое тело [15]. Образование MoO 3 перед любым падением трения предполагает, что может произойти увеличение шероховатости, которое может способствовать образованию M0S2, что указывает на физический эффект MoO 3 на образование M0S 2 . Хотя в нескольких работах [9, 11, 15] было показано, что только MoDTC эффективен в уменьшении трения, есть сообщения, которые показывают, что MoDTC может быть эффективным в уменьшении трения только в присутствии добавки ZDDP [3-5].Sogawa et al. [16] показал, что присутствие ZDDP способствует образованию M0S 2 из MoDTC. Они обнаружили, что при использовании модельного масла, содержащего как ZDDP, так и MoDTC, около 40% S из ZDDP было использовано для образования трибопленки M0S 2 в рубце износа, но точный механизм не был исследован. С другой стороны, Martin et al. [17] предложила реакцию элиминирования M0O3 фосфатом цинка, генерируемым из ZDDP, в соответствии с принципом жестких и мягких кислот и оснований (HSAB).Устранение M0O 3 считалось причиной того, почему система ZDDP / MoDTC более эффективна в снижении трения, чем один MoDTC — химический эффект ZDDP на снижение трения MoDTC. Однако топографический анализ трибопленок ZDDP подтвердил высокую шероховатость этой пленки [18, 19], что свидетельствует о влиянии ZDDP на образование M0S 2 , которое имеет физическую природу .

Хотя указание на виды, образующиеся при использовании добавки MoDTC, можно получить из анализа работы, проделанной несколькими группами, последовательность реакций, с помощью которых MoDTC образует M0S 2 , еще не установлена ​​и не доказана экспериментально.Кроме того, влияние ZDDP на механизм образования M0S 2 от MoDTC до сих пор полностью не изучено. В настоящей статье представлена ​​полная характеристика с точки зрения химических и топографических свойств трибопленок, образовавшихся до падения трения, и обсуждаются условия, благоприятные для образования M0S 2 и, следовательно, снижения трения. Процедура испытания, включающая замену масла одной модели на другую, использовалась для того, чтобы понять, имеют ли взаимодействия ZDDP / MoDTC физическую природу или химическую или их комбинацию.

Двигатель внутреннего сгорания — Энциклопедия Нового Света

Четырехтактный цикл (или цикл Отто)
1. Впуск
2. Компрессия
3. Мощность
4. Выпуск

Двигатель внутреннего сгорания — это двигатель, в котором сгорание топлива происходит в замкнутом пространстве, называемом камерой сгорания. Эта экзотермическая реакция топлива с окислителем создает газы с высокой температурой и давлением, которые могут расширяться. Отличительной особенностью двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, действующими непосредственно, вызывая движение, например, воздействуя на поршни, роторы или даже путем надавливания и перемещения самого двигателя.

Это контрастирует с двигателями внешнего сгорания, такими как паровые двигатели, в которых процесс сгорания используется для нагрева отдельной рабочей жидкости, обычно воды или пара, которые затем, в свою очередь, работают, например, при нажатии на поршень, приводимый в действие паром.

Термин Двигатель внутреннего сгорания (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также являются двигателями внутреннего сгорания.

Двигатели внутреннего сгорания используются в основном на транспорте. Несколько других применений предназначены для любой переносной ситуации, когда вам нужен неэлектрический двигатель. Самым большим применением в этой ситуации будет двигатель внутреннего сгорания, приводящий в действие электрогенератор. Таким образом, вы можете использовать стандартные электроинструменты с приводом от двигателя внутреннего сгорания.

Преимущество этого — портативность. Этот тип двигателя удобнее использовать в транспортных средствах над электричеством.Даже в случае гибридных автомобилей они по-прежнему используют двигатель внутреннего сгорания для зарядки аккумулятора. Недостатком является загрязнение, которое они тушат. Не только очевидное загрязнение воздуха, но и загрязнение сломанными или устаревшими двигателями и отработанными частями, такими как масло или резиновые изделия, которые необходимо выбросить. Еще одним фактором является шумовое загрязнение, многие двигатели внутреннего сгорания очень громкие. Некоторые из них настолько громкие, что людям нужны средства защиты органов слуха, чтобы не повредить уши. Еще один недостаток — размер.Очень непрактично иметь маленькие двигатели, которые могут иметь любую мощность. Электродвигатели для этого гораздо практичнее. Вот почему более вероятно увидеть электрический генератор, работающий на газе, в районе, где нет электричества для питания более мелких предметов.

История

Демонстрация непрямого или всасывающего принципа внутреннего сгорания. Это может не соответствовать определению двигателя, потому что процесс не повторяется. Ранние двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования, аналогичного этим моделям.

Первые двигатели внутреннего сгорания не имели компрессии, но работали на той топливно-воздушной смеси, которая могла всасываться или вдуваться во время первой части такта впуска. Наиболее существенное различие между современными двигателями внутреннего сгорания и ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре.

  • 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание не может подразумевать, что эта идея была оригинальной или что она действительно была построена.)
  • 1673: Христиан Гюйгенс описал двигатель без сжатия. [1]
  • 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет, в котором электрическая искра взорвала смесь воздуха и водорода, выпустив пробку из конца пистолета.
  • Семнадцатый век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
  • 1794: Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.
  • 1806: Швейцарский инженер Франсуа Исаак де Риваз построил двигатель внутреннего сгорания, работающий на смеси водорода и кислорода.
  • 1823: Сэмюэл Браун запатентовал первый двигатель внутреннего сгорания для промышленного применения. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже устарел. Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам.
  • 1824: Французский физик Сади Карно основал термодинамическую теорию идеализированных тепловых машин. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли конструкторы двигателей об этом до того, как сжатие уже стало широко использоваться. Это могло ввести в заблуждение дизайнеров, пытавшихся подражать циклу Карно бесполезными способами.
  • 1826 г. 1 апреля: американец Сэмюэл Мори получил патент на «газовый или паровой двигатель без сжатия».«
  • 1838: Патент был выдан Уильяму Барнету (англ.). Это было первое зарегистрированное предположение о сжатии в цилиндре. Он, очевидно, не осознавал его преимуществ, но его цикл стал бы большим достижением, если бы был достаточно развит.
  • 1854: итальянцы Эухенио Барсанти и Феличе Маттеуччи запатентовали первый действующий эффективный двигатель внутреннего сгорания в Лондоне (номер пункта 1072), но не начали его производство. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.
  • 1860: Жан Жозеф Этьен Ленуар (1822-1900) создал газовый двигатель внутреннего сгорания, внешне очень похожий на горизонтальный паровой двигатель двойного действия, с цилиндрами, поршнями, шатунами и маховиком, в которых газ, по существу, поглощал место пара. Это был первый серийный двигатель внутреннего сгорания. Его первый двигатель с компрессией шокировал сам себя.
  • 1862: Николаус Отто разработал двигатель непрямого действия со свободным поршнем без сжатия, более высокая эффективность которого получила поддержку Лангена, а затем и большей части рынка, который в то время в основном предназначался для небольших стационарных двигателей, работающих на горючем газе.
  • 1870: В Вене Зигфрид Маркус установил первый мобильный бензиновый двигатель на ручной тележке.
  • 1876: Николаус Отто в сотрудничестве с Готлибом Даймлером и Вильгельмом Майбахом разработал практичный четырехтактный двигатель (цикл Отто). Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.
  • 1879: Карл Бенц, работавший независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто.Позже Бенц спроектировал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, которые стали первыми автомобилями в производстве.
  • 1882: Джеймс Аткинсон изобрел двигатель цикла Аткинсона. Двигатель Аткинсона имел одну фазу мощности на оборот вместе с разными объемами впуска и расширения, что делало его более эффективным, чем цикл Отто.
  • 1891: Герберт Акройд Стюарт передает права аренды нефтяного двигателя Хорнсби, Англия, для производства двигателей. Строят первые двигатели с холодным запуском и воспламенением от сжатия.В 1892 году они устанавливают первые на водонасосной станции. Экспериментальная версия с более высоким давлением производит самоподдерживающееся воспламенение только за счет сжатия в том же году.
  • 1892: Рудольф Дизель разрабатывает двигатель типа теплового двигателя Карно, сжигающий угольную пыль.
  • 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
  • 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально расположенный двигатель, в котором соответствующие поршни одновременно достигают верхней мертвой точки, таким образом уравновешивая друг друга по импульсу.
  • 1900: Рудольф Дизель продемонстрировал дизельный двигатель в 1900 году на выставке Exposition Universelle (Всемирная выставка) с использованием арахисового масла (биодизеля).
  • 1900: Вильгельм Майбах спроектировал двигатель, построенный в Daimler Motoren Gesellschaft — в соответствии со спецификациями Эмиля Еллинека — который требовал, чтобы двигатель был назван Daimler-Mercedes в честь его дочери. В 1902 году автомобили с этим двигателем были запущены в производство компанией DMG.

Приложения

Двигатели внутреннего сгорания чаще всего используются в качестве передвижных двигателей в автомобилях, оборудовании и другом переносном оборудовании.В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной удельной топливной энергией. Эти двигатели используются почти во всех автомобилях, мотоциклах, лодках, а также в самых разных самолетах и ​​локомотивах. Там, где требуется очень высокая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде турбин. Они также используются в электрических генераторах и в промышленности.

Эксплуатация

Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.

Наиболее распространенное топливо, используемое сегодня, состоит из углеводородов и в основном производится из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и нефтяной газ, а также редкое использование пропана. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без значительных модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол и биодизель, форма дизельного топлива, которое производится из сельскохозяйственных культур, которые дают триглицериды, такие как соевое масло.Некоторые также могут работать на водороде.

Все двигатели внутреннего сгорания должны иметь способ зажигания в цилиндрах для создания сгорания. В двигателях используется либо электрический метод, либо система воспламенения от сжатия.

Процесс воспламенения бензина

Электрические / бензиновые системы зажигания (которые также могут работать на других видах топлива, как упоминалось ранее) обычно основаны на комбинации свинцово-кислотной батареи и индукционной катушки для создания высоковольтной электрической искры для воспламенения топливовоздушной смеси в цилиндры двигателя.Эту батарею можно заряжать во время работы с помощью устройства, вырабатывающего электричество, такого как генератор переменного тока или генератор, приводимый в действие двигателем. Бензиновые двигатели впитывают смесь воздуха и бензина и сжимают до менее 170 фунтов на квадратный дюйм и используют свечу зажигания для воспламенения смеси, когда она сжимается головкой поршня в каждом цилиндре.

Процесс зажигания дизельного двигателя

Системы воспламенения от сжатия, такие как дизельный двигатель и двигатели HCCI (гомогенный заряд и воспламенение от сжатия), для воспламенения полагаются исключительно на тепло и давление, создаваемые двигателем в процессе сжатия.Возникающая компрессия обычно более чем в три раза выше, чем в бензиновом двигателе. Дизельные двигатели будут всасывать только воздух, и незадолго до пикового сжатия небольшое количество дизельного топлива впрыскивается в цилиндр через топливную форсунку, которая позволяет топливу мгновенно воспламениться. Двигатели типа HCCI будут потреблять как воздух, так и топливо, но по-прежнему будут полагаться на процесс самовоспламенения без посторонней помощи из-за более высокого давления и высокой температуры. Это также является причиной того, что дизельные двигатели и двигатели HCCI также более подвержены проблемам с холодным запуском, хотя после запуска они будут работать так же хорошо в холодную погоду.Большинство дизелей также имеют аккумуляторные батареи и системы зарядки, однако эта система является вторичной и добавляется производителями в качестве роскоши для простоты запуска, включения и выключения топлива, что также может быть выполнено с помощью переключателя или механического устройства, а также для запуска вспомогательных электрических компонентов и аксессуаров. . Однако большинство современных дизелей полагаются на электрические системы, которые также контролируют процесс сгорания для повышения эффективности и сокращения выбросов.

Энергия

После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию).Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем. В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

После того, как доступная энергия удалена, оставшиеся горячие газы сбрасываются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя.Любое тепло, не переведенное в работу, обычно считается отходом и удаляется из двигателя с помощью системы воздушного или жидкостного охлаждения.

Детали

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя.

Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива.В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый). Одиночный ход поршня вверх или вниз известен как ход, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

Двигатель Ванкеля имеет треугольный ротор, вращающийся в эпитрохоидальной камере (в форме фигуры 8) вокруг эксцентрикового вала.Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Bourke используется пара поршней, встроенных в кулису, которая передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск — все это происходит при каждом такте вилки.

Классификация

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям.Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латинского через старофранцузское, ingenium, «способность») означало любую часть механизма. «Мотор» (от лат. «мотор», «движитель») — это любая машина, производящая механическую энергию. Традиционно электродвигатели не называют двигателями, но двигатели внутреннего сгорания часто называют двигателями.»(Электродвигатель относится к локомотиву, работающему от электричества.)

С учетом сказанного, нужно понимать, что обычное использование часто требует определений. Многие люди рассматривают двигатели как те объекты, которые генерируют энергию изнутри, а двигатели — как требующие внешнего источника энергии для выполнения своей работы. Очевидно, корни слов действительно указывают на настоящую разницу. Кроме того, как и во многих определениях, корневое слово объясняет только начало слова, а не его текущее употребление.Конечно, можно утверждать, что так обстоит дело со словами мотор и двигатель.

Принципы работы

Поршневой:

  • Двигатель на сырой нефти
  • Двухтактный цикл
  • Четырехтактный цикл
  • Двигатель с горячей лампой
  • Тарельчатые клапаны
  • Рукавный клапан
  • Цикл Аткинсона
  • Предлагаемый
  • Улучшения
  • Двигатель внутреннего сгорания

Поворотный:

  • Продемонстрировано:
  • Предложено:
    • Орбитальный двигатель
    • Квазитурбина
    • Роторный двигатель цикла Аткинсона
    • Тороидальный двигатель

Непрерывное сгорание:

  • Газовая турбина
  • Реактивный двигатель
  • Ракетный двигатель

Цикл двигателя

Двухтактный

Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод двухтактных двигателей с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, средства для удаления сорняков, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они также, как правило, громче, менее эффективны и загрязняют больше, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров. Двухтактные двигатели менее экономичны, чем другие типы двигателей, потому что неизрасходованное топливо, распыляемое в камеру сгорания, может иногда выходить из выхлопного тракта вместе с ранее отработанным топливом.Без специальной обработки выхлопных газов это также приведет к очень высокому уровню загрязнения, требуя, чтобы во многих областях применения небольших двигателей, таких как газонокосилки, использовались четырехтактные двигатели, и в некоторых странах с двухтактными двигателями меньшего размера, оснащенными каталитическими преобразователями.

Четырехтактный

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев.Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия. Этот вариант называется дизельным циклом.

Пятитактный

Двигатели, основанные на пятитактном цикле, представляют собой вариант четырехтактного цикла. Обычно четыре цикла — это впуск, сжатие, сгорание и выпуск. Пятый цикл, добавленный Delautour [2] , — это охлаждение.Двигатели, работающие с пятитактным циклом, на 30 процентов более эффективны, чем эквивалентный четырехтактный двигатель.

Двигатель Бурка

В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом шатунным штифтом, проходящим через общую вилку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, происходит два рабочих хода на оборот. Однако, в отличие от обычного двухтактного двигателя, отработавшие газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе.Механизм с кулисой также имеет низкую боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндров. Фаза сгорания двигателя Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем в двух других типах возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Двигатель с регулируемым сгоранием

Это также цилиндрические двигатели, которые могут быть одно- или двухтактными, но в них вместо коленчатого вала и поршневых штоков используются два соединенных зубчатых колеса концентрических кулачка, вращающихся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное движение. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД. Профили кулачков (которые всегда нечетные и по крайней мере три) определяют ход поршня в зависимости от передаваемого крутящего момента.В этом двигателе есть два цилиндра, которые разнесены на 180 градусов для каждой пары кулачков встречного вращения. Для одноходовых версий существует такое же количество циклов на пару цилиндров, как и кулачков на каждом кулачке, в два раза больше для двухтактных агрегатов.

Ванкель

Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы назвать четырехфазным двигателем), поскольку фазы находятся в разных местах двигателя.Этот двигатель обеспечивает три «такта» мощности на оборот на ротор, что в среднем дает ему большее отношение мощности к массе, чем поршневые двигатели. Этот тип двигателя используется в нынешних моделях Mazda RX8 и RX7 ранее, а также в других моделях.

Газовая турбина

В газотурбинных циклах (особенно в реактивных двигателях) вместо использования одного и того же поршня для сжатия и последующего расширения газов используются отдельные компрессоры и газовые турбины; давая постоянную мощность. По сути, всасываемый газ (обычно воздух) сжимается, а затем сжигается с топливом, что значительно повышает температуру и объем.Затем больший объем горячего газа из камеры сгорания подается через газовую турбину, которая затем легко может приводить в действие компрессор.

Вышедшие из употребления методы

В некоторых старых двигателях внутреннего сгорания без компрессии: в первой части хода поршня вниз была засосана или вдувалась топливно-воздушная смесь. В остальной части хода поршня вниз впускной клапан закрылся, и топливно-воздушная смесь сгорела. При ходе поршня вверх выпускной клапан был открыт. Это была попытка имитации работы поршневого парового двигателя.

Виды топлива и окислителя

Используемые виды топлива включают нефтяной спирт (североамериканский термин: бензин, британский термин: бензин), автогаз (сжиженный нефтяной газ), сжатый природный газ, водород, дизельное топливо, реактивное топливо, свалочный газ, биодизель, биобутанол, арахисовое масло и другие растительные масла. , биоэтанол, биометанол (метиловый или древесный спирт) и другие виды биотоплива. Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями.Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

Окислителем обычно является воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность.Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но большинство из них непрактично.

Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели. Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах.Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40 процентов рынка. И бензиновые, и дизельные двигатели производят значительные выбросы. Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые и тракторные двигатели с испарительным маслом (TVO) больше не встречаются.

Водород

Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание ископаемого топлива, при котором образуется двуокись углерода, основная причина глобального потепления, окись углерода в результате неполного сгорания, а также другие местные и атмосферные загрязнители, такие как двуокись серы и окислы азота, которые вызывают проблемы с дыханием в городах, кислотные дожди , и проблемы с газом озоном.Однако свободный водород для топлива не возникает в природе, при его сжигании выделяется меньше энергии, чем требуется для получения водорода в первую очередь самым простым и распространенным методом — электролизом. Хотя существует несколько способов производства свободного водорода, они требуют преобразования горючих молекул в водород, поэтому водород не решает никаких энергетических кризисов, более того, он решает только проблему переносимости и некоторые проблемы загрязнения. Большим недостатком водорода во многих ситуациях является его хранение.Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз меньше, чем вода, и требует обширной изоляции, тогда как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии все еще примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендола, создает водород по мере необходимости, но здесь есть и другие проблемы, такие как относительно дорогое сырье.) К другим видам топлива, более благоприятным для окружающей среды, относится биотопливо.Они не могут дать чистого прироста углекислого газа.

Одноцилиндровый бензиновый двигатель (ок. 1910 г.).

Цилиндры

Двигатели внутреннего сгорания могут содержать любое количество цилиндров с обычными номерами от одного до двенадцати, хотя было использовано до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: во-первых, двигатель может иметь больший рабочий объем с меньшими индивидуальными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию к вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, есть точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. например двигатель W16 от Volkswagen существуют.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиационные двигатели, ныне устаревшие, имели от трех до 28 цилиндров, такие как Pratt & Whitney R-4360. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым большим из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, а в некоторых высокопроизводительных моделях их шесть (хотя существуют «новинки» с 8, 10 и 12).
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
  • Небольшие портативные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют и двухцилиндровые бензопилы.

Система зажигания

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка цикла, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на КПД и мощность ДВС.Для типичного 4-тактного автомобильного двигателя горящая смесь должна достичь максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы фронт пламени не касался опускающейся головки поршня. Если фронт пламени соприкасается с поршнем, это может привести к появлению детонации или детонации.Более бедные смеси и смеси с более низким давлением горят медленнее, что требует более точного момента зажигания. Сегодня в большинстве двигателей используется электрическая или компрессионная система нагрева для зажигания. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания — патент США 609250 (PDF) «Электрический воспламенитель для газовых двигателей» 16 августа 1898 года.

Топливные системы

Топливо сгорает быстрее и полнее, если большая площадь его поверхности контактирует с кислородом.Чтобы двигатель работал эффективно, топливо должно испаряться в поступающий воздух в виде того, что обычно называется топливно-воздушной смесью. Обычно используются два метода испарения топлива в воздух: карбюраторный и впрыск топлива.

Часто в более простых поршневых двигателях для подачи топлива в цилиндр используется карбюратор. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно. Карбюраторы — это самые распространенные в настоящее время устройства для смешивания топлива, используемые в газонокосилках и других двигателях малой мощности.До середины 1980-х карбюраторы также были распространены в автомобилях.

Более крупные бензиновые двигатели, такие как используемые в автомобилях, в основном перешли на системы впрыска топлива. В дизельных двигателях всегда используется впрыск топлива.

Автогазовые двигатели (LPG) используют либо системы впрыска топлива, либо карбюраторы с открытым или закрытым контуром.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

Конфигурация двигателя

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на обоих концах одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Объем двигателя

Рабочий объем двигателя — это рабочий объем или рабочий объем поршней двигателя. Обычно он измеряется в литрах (л) или кубических дюймах ( или куб. Дюймов) для двигателей большего размера и кубических сантиметрах (сокращенно кубических сантиметрах) для двигателей меньшего размера.Двигатели с большей мощностью обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличения мощности двигателя. Первый — удлинить ход, второй — увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II были оснащены двигателем BMC серии A с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако в торговой литературе и на значках транспортных средств объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно.

Смазочные системы

Используется несколько различных типов систем смазки. Простые двухтактные двигатели смазываются маслом, смешанным с топливом или впрыскиваемым в поток впуска в виде спрея.Ранние тихоходные стационарные и судовые двигатели смазывались под действием силы тяжести из небольших камер, подобных тем, которые использовались в паровых двигателях в то время, с тендером, заполняющим их по мере необходимости. Поскольку двигатели были адаптированы для использования в автомобилях и самолетах, необходимость в высоком соотношении мощности к массе привела к увеличению скорости вращения, повышению температуры и большему давлению на подшипники, что, в свою очередь, требовало смазки под давлением для шатунных подшипников и шейки шатуна либо за счет прямой смазки от насоса, либо косвенно посредством струи масла, направляемой на приемные чашки на концах шатуна, что имело то преимущество, что при увеличении частоты вращения двигателя создавалось более высокое давление.

Загрязнение двигателя

Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию оксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух. Основными причинами этого являются необходимость работы бензиновых двигателей, близких к стехиометрическому, для достижения сгорания (топливо сгорает более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.

Дизельные двигатели выделяют широкий спектр загрязняющих веществ, включая аэрозоли многих мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (LPG), имеют очень низкий уровень выбросов, поскольку LPG горит очень чисто и не содержит серы или свинца.

  • Многие виды топлива содержат серу, которая приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
  • Высокая температура горения приводит к образованию больших количеств оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для животных.
  • Чистое производство двуокиси углерода не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Двигатели, работающие на водороде, должны производить только воду, но при использовании воздуха в качестве окислителя также образуются оксиды азота.

КПД двигателя внутреннего сгорания

КПД различных типов двигателей внутреннего сгорания различается.Принято считать, что большинство двигателей внутреннего сгорания, работающих на бензине, даже при использовании турбонагнетателей и вспомогательных средств повышения эффективности имеют механический КПД около 20 процентов. Большинство двигателей внутреннего сгорания тратят около 36 процентов энергии бензина в виде тепла, теряемого в системе охлаждения, и еще 38 процентов через выхлоп. Остальное, около шести процентов, теряется из-за трения. Большинству инженеров не удавалось успешно использовать потраченную впустую энергию для каких-либо значимых целей, хотя существуют различные дополнительные устройства и системы, которые могут значительно повысить эффективность сгорания.

впрыск водородного топлива, или HFI, представляет собой систему надстройки двигателя, которая, как известно, улучшает экономию топлива двигателей внутреннего сгорания за счет впрыска водорода для улучшения сгорания во впускной коллектор. Можно увидеть прирост экономии топлива от 15 до 50 процентов. Небольшое количество водорода, добавляемого к всасываемому топливно-воздушному заряду, увеличивает октановое число комбинированного топливного заряда и увеличивает скорость пламени, тем самым позволяя двигателю работать с более продвинутой синхронизацией зажигания, более высокой степенью сжатия и более бедной воздушно-топливной смесью. к топливной смеси, чем это возможно в противном случае.В результате снижается уровень загрязнения, увеличивается мощность и эффективность. Некоторые системы HFI используют бортовой электролизер для выработки используемого водорода. Также можно использовать небольшой резервуар с водородом под давлением, но этот метод требует повторного заполнения.

Также обсуждались новые типы двигателей внутреннего сгорания, такие как Scuderi Split Cycle Engine, которые используют высокое давление сжатия, превышающее 2000 фунтов на квадратный дюйм, и сгорают после верхней мертвой точки (самая высокая и самая сжатая точка в ход поршня внутреннего сгорания).Ожидается, что такие двигатели будут иметь КПД 50-55%.

Банкноты

Список литературы

  • Харденберг, Хорст О. 1999. Средние века двигателя внутреннего сгорания . Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768003911.
  • Хейвуд, Джон. 1988. Основы двигателя внутреннего сгорания. Нью-Йорк: McGraw-Hill Science / Engineering / Math. ISBN 007028637X.
  • Стоун, Ричард. 1999. Введение в двигатели внутреннего сгорания .Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768004950.
  • Тейлор, Чарльз Фейет. 1985. Двигатель внутреннего сгорания в теории и практике . Кембридж, Массачусетс: MIT Press. ISBN 0262700263.

Внешние ссылки

Все ссылки получены 4 марта 2018 г.

  • Знакомство с автомобильными двигателями — изображения в разрезе и хороший обзор двигателя внутреннего сгорания
  • Библия по топливу и двигателям — хороший ресурс по различным типам двигателей и топливам
  • youtube — Анимация компонентов 4-цилиндрового двигателя
  • youtube — Анимация внутренних движущихся частей 4-цилиндрового двигателя

Кредиты

Энциклопедия Нового Света Писатели и редакторы переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, , так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в Энциклопедия Нового Света :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Двигатель внутреннего сгорания | Engineering

Двигатель внутреннего сгорания — это тепловой двигатель, в котором сгорание происходит в замкнутом пространстве, называемом камерой сгорания. Сгорание топлива создает газы с высокой температурой / давлением, которые могут расширяться. Расширяющиеся газы используются для непосредственного перемещения поршня, лопаток турбины, ротора (ов) или самого двигателя, выполняя полезную работу.

Двигатели внутреннего сгорания могут работать на любом топливе, которое может сочетаться с «окислителем» в камере.

Напротив, двигатель внешнего сгорания, такой как паровой двигатель, действительно работает, когда в процессе сгорания нагревается отдельная рабочая жидкость, такая как вода или пар, который, в свою очередь, работает.

Реактивные двигатели, большинство ракет и многие газовые турбины строго классифицируются как двигатели внутреннего сгорания, но термин двигатель внутреннего сгорания также используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым.

Сегодня двигатель внутреннего сгорания сокращается до аббревиатуры ICE.

Четырехтактный цикл (или цикл Отто)

Без сжатия [править | править источник]

Леонардо да Винчи [1] в 1509 году и Христиан Гюйгенс [2] в 1673 году описали двигатели постоянного давления. (Описание Леонардо не может подразумевать, что идея исходила от него или что она действительно была сконструирована.)

Непрямое внутреннее сгорание или принцип всасывания может не соответствовать определению двигателя, потому что процесс не повторяется.

Первые двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования.

Английский изобретатель сэр Сэмюэл Морланд [3] использовал порох [4] для привода водяных насосов в 17 веке. В 1794 году Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.

Первый двигатель внутреннего сгорания, который будет применяться в промышленности, был запатентован Самуэлем Брауном в 1823 году. Он был основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже был устаревшим.Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам. Итальянцы Эухенио Барсанти [5] и Феличе Маттеуччи [6] запатентовали первый работающий эффективный двигатель внутреннего сгорания в 1854 году в Лондоне (номер детали 1072), но не начали его производство. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.

В 1860 году Этьен Ленуар [7] (1822–1900) создал газовый двигатель внутреннего сгорания, внешне не отличающийся от парового двигателя.Он очень напоминал горизонтальный паровой двигатель двойного действия с цилиндрами, поршнями, шатунами и маховиком, в котором газ по существу заменял пар. Это был первый серийный двигатель внутреннего сгорания. Американец Сэмюэл Мори [8] получил патент 1 апреля 1826 г. на «газовый или паровой двигатель».

Его первый (1862 год) двигатель со сжатием, разошедшийся на части, Николаус Отто [9] разработал двигатель непрямого действия со свободным поршнем без сжатия, чья большая эффективность завоевала поддержку Лангена, а затем и большей части рынка, который в то время, в основном предназначался для небольших стационарных двигателей, работающих на газовом топливе.В 1870 году в Вене Зигфрид Маркус [10] поставил на ручную тележку первый передвижной бензиновый двигатель.

Сжатие [править | править источник]

Наиболее существенное различие между современными двигателями внутреннего сгорания и ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре. Термодинамическая теория идеализированных тепловых двигателей была основана Николя Леонардом Сади Карно [11] во Франции в 1824 году. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, были ли разработчики двигателей знали об этом до того, как сжатие уже стало широко использоваться.Фактически, это могло ввести в заблуждение дизайнеров, которые пытались подражать циклу Карно бесполезными способами.

Первым зарегистрированным предложением компрессии в цилиндре был патент, выданный Уильяму Барнету (англ.) В 1838 году. Он, очевидно, не осознавал его преимуществ, но его цикл был бы большим достижением, если бы был достаточно развит.

Отто, работая с Готлибом Даймлером [12] и Вильгельмом Майбахом [13] в 1870-х годах, разработал практический четырехтактный двигатель (цикл Отто).Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.

Двигатели внутреннего сгорания чаще всего используются в мобильных силовых установках. В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной удельной топливной энергией. Эти двигатели используются почти во всех автомобилях, мотоциклах, многих лодках, а также в самых разных самолетах и ​​локомотивах.Там, где требуется очень большая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде газовых турбин. Они также используются в электрических генераторах и в промышленности.

Для маломощных мобильных и многих немобильных приложений электродвигатель является конкурентоспособной альтернативой. В будущем электродвигатели также могут стать конкурентоспособными для большинства мобильных приложений. Однако высокая стоимость, вес и низкая удельная энергия батарей PbA и даже NiMH, а также отсутствие доступных по цене бортовых электрических генераторов, таких как топливные элементы, в значительной степени ограничивают их использование в специализированных приложениях.Однако последние достижения в области легких литий-ионных и литий-полимерных аккумуляторов позволили довести безопасность, плотность мощности, срок службы и стоимость до приемлемых или даже желаемых уровней. Например, недавно аккумуляторные электромобили начали демонстрировать дальность действия 300 миль на литии, теперь улучшенная мощность делает их привлекательными для подключаемых к сети гибридных электромобилей, запас хода которых менее критичен, поскольку внутреннее сгорание составляет неограниченный диапазон .

Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакции топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.См. Также стехиометрию [14].

Наиболее распространенные виды топлива, используемые сегодня, состоят из углеводородов и получают из нефти. К ним относятся топливо, известное как дизельное топливо, бензин и сжиженный нефтяной газ. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без каких-либо модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо соответствующего состава.

Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание углеводородов, при котором также образуется двуокись углерода, основная причина глобального потепления, а также окись углерода в результате неполного сгорания. Большим недостатком водорода во многих ситуациях является его хранение. Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз меньше, чем вода, и требует обширной изоляции, тогда как газообразный водород требует очень тяжелых резервуаров.Хотя водород легкий и поэтому имеет более высокую удельную энергию, объемный КПД все же примерно в пять раз ниже, чем у бензина. Вот почему водород необходимо сжимать, чтобы сохранить полезное количество энергии.

Все двигатели внутреннего сгорания должны иметь средства зажигания, способствующие сгоранию. В большинстве двигателей используется электрическая система зажигания или система зажигания с подогревом от сжатия. В системах электрического зажигания обычно используются свинцово-кислотная батарея и индукционная катушка, которые создают электрическую искру высокого напряжения для воспламенения топливовоздушной смеси в цилиндрах двигателя.Эту батарею можно заряжать во время работы с помощью генератора переменного тока , приводимого в действие двигателем. Системы зажигания с компрессионным нагревом (дизельные двигатели и двигатели HCCI) полагаются на тепло, создаваемое в воздухе за счет сжатия в цилиндрах двигателя, для воспламенения топлива.

После успешного воспламенения и сгорания продукты сгорания (горячие газы) имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию). Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем.В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

После того, как доступная энергия удалена, оставшиеся горячие газы удаляются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла (который зависит от двигателя). Любое тепло, не переведенное в работу, является отходом и выводится из двигателя с помощью системы воздушного или жидкостного охлаждения.

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя

Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива. В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый).Одиночный ход поршня вверх или вниз известен как ход, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

Двигатель Ванкеля имеет треугольный ротор, вращающийся в эпитроихоидной камере (в форме фигуры 8) вокруг эксцентрикового вала. Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Bourke используется пара поршней, встроенных в кулису, которая передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск — все это происходит при каждом такте вилки.

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям. Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет.«Когда-то слово« двигатель »(от латинского [15], через старофранцузское [16], ingenium ,« способность ») означало любую часть механизма.« Двигатель »(от латинского motor ,« двигатель ») — это любая машина, которая производит механическую энергию. Традиционно электродвигатели не называют« двигателями », но двигатели внутреннего сгорания часто называют« двигателями ».

Принципы работы [править | править источник]

Поршневой:

Поворотный:

Непрерывное горение:

Цикл двигателя [править | править источник]

Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод двухтактных двигателей с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они также, как правило, громче, менее эффективны и загрязняют больше, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров.

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах.Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев. Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия можно отдельно говорить о дизельном цикле. Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы назвать четырехфазным двигателем), поскольку фазы находятся в разных местах двигателя; однако, как и двухтактный поршневой двигатель, он обеспечивает один «ход» мощности на оборот на ротор, что дает ему такую ​​же пространственную и весовую эффективность.Фаза сгорания в цикле Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем в двух других типах возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Типы топлива и окислителя [править | править источник]

Используемые виды топлива включают бензин (британский термин: бензин), сжиженный нефтяной газ, испаренный нефтяной газ, сжатый природный газ, водород, дизельное топливо, JP18 (реактивное топливо), свалочный газ, биодизель, арахисовое масло, этанол, метанол (метил или древесина). алкоголь).Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями. Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

Окислителем обычно является воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность. Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но в основном непрактичны.

Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели.Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях и некоторых локомотивах и легких самолетах. Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40% рынка. И бензиновые, и дизельные двигатели производят значительные выбросы.Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые двигатели и двигатели с испарительным маслом для тракторов (TVO) больше не используются.

Цилиндры [править | править источник]

Двигатели внутреннего сгорания могут содержать любое количество цилиндров, обычно с номерами от одного до двенадцати, хотя было использовано целых 28 цилиндров. Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: Первое. двигатель может иметь больший рабочий объем с меньшими индивидуальными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, есть точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. такие как двигатель W-16 от Volkswagen.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиационные двигатели, ныне устаревшие, имели от пяти до 28 цилиндров. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, а в некоторых высокопроизводительных моделях их шесть.
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
  • Небольшие портативные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют и двухцилиндровые бензопилы.

Система зажигания [редактировать | править источник]

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Сегодня в большинстве двигателей используется электрическая или компрессионная система нагрева для зажигания. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания с патентом США « Электрический воспламенитель для газовых двигателей » 16 августа 1898 года.

Топливные системы [править | править источник]

Часто для более простых поршневых двигателей используется карбюратор для подачи топлива в цилиндр. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно.

Более крупные бензиновые двигатели, используемые в автомобилях, в основном перешли на системы впрыска топлива. В двигателях на сжиженном нефтяном газе используется смесь систем впрыска топлива и карбюраторов с обратной связью. В дизельных двигателях всегда используется впрыск топлива.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

Конфигурация двигателя

[править | править источник]

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на обоих концах одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Объем двигателя [править | править источник]

Рабочий объем двигателя — это рабочий объем или рабочий объем поршней двигателя. Обычно он измеряется в литрах или кубических дюймах для двигателей большего размера и в кубических сантиметрах (сокращенно кубических сантиметрах) для двигателей меньшего размера.Двигатели большей мощности обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличения мощности двигателя. Первый — удлинить ход, второй — увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II имели двигатели с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако в торговой литературе и на значках автомобиля объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно.

Загрязнение двигателя [править | править источник]

Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию оксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух.

Дизельные двигатели выделяют широкий спектр загрязняющих веществ, включая аэрозоли из множества мелких частиц, которые, как считается, глубоко проникают в легкие человека.

  • Многие виды топлива содержат серу, которая приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
  • Высокая температура горения приводит к образованию больших количеств оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для животных.
  • Чистое производство двуокиси углерода не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит.Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Двигатели, работающие на водороде, должны производить только воду, но при использовании воздуха в качестве окислителя также образуются оксиды азота.
  • Певец Чарльз Джозеф; Рэпер, Ричард, История технологии: Двигатель внутреннего сгорания , отредактированный Чарльзом Сингером … [и др.], Clarendon Press, 1954–1978. С. 157–176. [20]
  • Харденберг, Хорст О., Средние века двигателя внутреннего сгорания , Общество автомобильных инженеров (SAE), 1999 г.

Шаблон: Commons

Двигатель внутреннего сгорания | Encyclopedia.com

Принципы

Структура двигателя внутреннего сгорания

Ресурсы

Двигатель внутреннего сгорания — это любой тепловой двигатель, который получает механическую энергию путем сжигания химической энергии (топлива) в замкнутом пространстве (камере сгорания). Изобретение и разработка двигателя внутреннего сгорания в девятнадцатом веке оказали глубокое влияние на человеческую жизнь.Двигатель внутреннего сгорания представляет собой относительно небольшой и легкий источник той мощности, которую он производит. Использование этой мощности сделало возможным создание практичных машин, начиная от самой маленькой модели самолета и заканчивая самым большим грузовиком. Электроэнергия часто вырабатывается двигателями внутреннего сгорания. Газонокосилки, бензопилы и генераторы также могут использовать двигатели внутреннего сгорания. Важным устройством на базе ДВС является автомобиль.

Однако во всех двигателях внутреннего сгорания основные принципы остаются неизменными.Топливо сжигается внутри камеры, обычно в цилиндре. Энергия, создаваемая сгоранием или сгоранием топлива, используется для продвижения устройства, обычно поршня, через камеру. Прикрепив поршень к валу за пределами камеры, движение и сила поршня могут быть преобразованы в другие движения.

Горение — это сжигание топлива. Когда топливо сгорает, оно выделяет энергию в виде тепла, что приводит к расширению газа. Это расширение может быть быстрым и мощным.Сила и движение расширения газа могут быть использованы для толкания объекта. Взболтать банку газировки — это способ увидеть, что происходит, когда газ расширяется. Встряхивающее движение вызывает реакцию углекислого газа — шипение газировки, — которое при открытии банки выталкивает жидкость с газировкой из банки и через отверстие.

Однако простое сжигание топлива не очень полезно для создания движения. Например, зажигание спички сжигает кислород в воздухе вокруг нее, но поднимаемое тепло теряется во всех направлениях и, следовательно, дает очень слабый толчок.Чтобы расширение газа, вызванное сгоранием, было полезным, оно должно происходить в ограниченном пространстве. Это пространство может направлять или направлять движение расширения; он также может увеличить свою силу.

Цилиндр — это полезное пространство для передачи силы сгорания. Круглая внутренняя часть цилиндра позволяет газам легко течь, а также увеличивает силу движения газов. Круговое движение газов также может способствовать втягиванию воздуха и паров в цилиндр или их повторному вытеснению.Ракета — простой пример использования внутреннего сгорания в цилиндре. В ракете нижний конец цилиндра открыт. Когда топливо внутри цилиндра взрывается, газы быстро расширяются к отверстию, давая толчок, необходимый для отталкивания ракеты от земли.

Эта сила может быть даже полезнее. Его можно заставить толкнуть объект внутри цилиндра, заставляя его двигаться через цилиндр. Пуля в пистолете — пример такого объекта. Когда топливо, в данном случае порох, взрывается, возникающая сила продвигает пулю через цилиндр или ствол пистолета.Это движение полезно для определенных вещей; однако его можно сделать еще более полезным. Закрыв концы цилиндра, можно управлять движением объекта, заставляя его двигаться вверх и вниз внутри цилиндра. Это движение, называемое возвратно-поступательным движением, затем можно использовать для выполнения других задач.

Двигатели внутреннего сгорания обычно используют возвратно-поступательное движение, хотя газовые турбины, ракетные и роторные двигатели являются примерами других типов двигателей внутреннего сгорания. Однако поршневые двигатели внутреннего сгорания являются наиболее распространенными и используются в большинстве автомобилей, грузовиков, мотоциклов и других машин с приводом от двигателя.

Самыми основными компонентами двигателя внутреннего сгорания являются цилиндр, поршень и коленчатый вал. К ним прикреплены другие компоненты, которые увеличивают эффективность возвратно-поступательного движения и преобразуют это движение во вращательное движение коленчатого вала. Топливо должно поступать в цилиндр, а выхлоп, образованный взрывом топлива, должен обеспечивать выход из цилиндра. Также необходимо произвести зажигание или зажигание топлива. В поршневом двигателе внутреннего сгорания это делается одним из двух способов.

Дизельные двигатели также называют двигателями сжатия, поскольку они используют сжатие для самовоспламенения топлива. Воздух сжимается, то есть выталкивается в небольшое пространство цилиндра. Сжатие вызывает нагревание воздуха; когда топливо попадает в горячий сжатый воздух, топливо взрывается. Давление, создаваемое сжатием, требует, чтобы дизельные двигатели были более прочными и, следовательно, тяжелее, чем бензиновые двигатели, но они более мощные и требуют менее дорогостоящего топлива.Дизельные двигатели обычно используются в больших транспортных средствах, таких как грузовики и тяжелая строительная техника, или в стационарных машинах, но в 2000-х годах они находят свое применение в автомобилях, поскольку технологии совершенствуются и возникает потребность в менее дорогих видах топлива.

Бензиновые двигатели также называют двигателями с искровым зажиганием, потому что они зависят от искры электричества, вызывающей взрыв топлива в цилиндре. Газовый двигатель легче дизельного двигателя и требует более очищенного топлива (следовательно, более дорогостоящего).

В двигателе цилиндр расположен внутри блока цилиндров, достаточно прочного, чтобы сдерживать взрывы топлива. Внутри цилиндра находится поршень, который точно соответствует цилиндру. Поршни обычно имеют куполообразную форму вверху и полую внизу. Поршень прикреплен через шатун, установленный в полой нижней части, к коленчатому валу, который преобразует движение поршня вверх и вниз в круговое движение. Это возможно, потому что коленчатый вал не прямой, а имеет изогнутую часть (по одной на каждый цилиндр), называемую кривошипом.

Аналогичная конструкция приводит в движение велосипед. При езде на велосипеде верхняя часть ноги человека похожа на поршень. От колена до стопы нога действует как шатун, который прикрепляется к коленчатому валу с помощью кривошипа или педального узла велосипеда. Когда сила подается на верхнюю ногу, эти части начинают двигаться. Возвратно-поступательное движение голени преобразуется во вращательное или вращательное движение коленчатого вала.

Обратите внимание, что при езде на велосипеде нога делает два движения, одно вниз и одно вверх, чтобы завершить цикл вращения педалей.Это так называемые удары. Поскольку двигатель также должен всасывать топливо и снова выпускать топливо, большинство двигателей используют четыре хода для каждого цикла, который совершает поршень. Первый ход начинается, когда поршень оказывается в верхней части цилиндра, называемой головкой цилиндра. Когда он опускается, в цилиндре создается вакуум. Это потому, что поршень и цилиндр образуют герметичное пространство. Когда поршень опускается, пространство между ним и головкой блока цилиндров увеличивается, а количество воздуха остается прежним.Этот вакуум помогает подавать топливо в цилиндр, подобно действию легких. Поэтому этот ход называется тактом впуска.

Следующий ход, называемый тактом сжатия, происходит, когда поршень снова подталкивается вверх внутри цилиндра, сжимая или сжимая топливо в более тесное и тесное пространство. Сжатие топлива в верхней части цилиндра вызывает нагревание воздуха, что также нагревает топливо. Сжатие топлива также облегчает воспламенение и делает взрыв более мощным.У расширяющихся газов взрыва меньше места, а это означает, что они будут сильнее давить на поршень, чтобы уйти.

В верхней части такта сжатия топливо воспламеняется, вызывая взрыв, толкающий поршень вниз. Этот ход называется рабочим ходом, и это ход, при котором вращается коленчатый вал. Последний ход, такт выпуска, снова поднимает поршень вверх, который вытесняет выхлопные газы, образовавшиеся в результате взрыва, из цилиндра через выпускной клапан.Эти четыре удара также обычно называют «сосать, сжимать, хлопать и дуть». Двухтактные двигатели исключают такты впуска и выпуска, комбинируя их с тактами сжатия и увеличения мощности. Это позволяет создать более легкий и мощный двигатель — по сравнению с размером двигателя — требующий менее сложной конструкции. Однако двухтактный цикл — менее эффективный метод сжигания топлива. Остаток несгоревшего топлива остается внутри цилиндра, что препятствует сгоранию. Двухтактный двигатель также воспламеняет топливо в два раза чаще, чем четырехтактный двигатель, что увеличивает износ деталей двигателя.Поэтому двухтактные двигатели используются в основном там, где требуется двигатель меньшего размера, например, на некоторых мотоциклах и с небольшими инструментами.

Для горения требуется присутствие кислорода, поэтому для воспламенения топливо необходимо смешать с воздухом. В дизельных двигателях топливо подается непосредственно для реакции с горячим воздухом внутри цилиндра. Однако двигатели с искровым зажиганием сначала смешивают топливо с воздухом вне цилиндра. Это делается либо через карбюратор, либо через систему впрыска топлива. Оба устройства испаряют бензин и смешивают его с воздухом в соотношении примерно 14 частей воздуха на каждую часть бензина.Дроссельная заслонка в карбюраторе регулирует количество воздуха, смешиваемого с топливом; на другом конце дроссельная заслонка контролирует, сколько топливной смеси будет отправлено в цилиндр.

Вакуум, создаваемый при движении поршня вниз по цилиндру, втягивает топливо в цилиндр. Поршень должен точно входить в цилиндр, чтобы создать этот вакуум. Резиновые компрессионные кольца, вставленные в канавки поршня, обеспечивают герметичность посадки. Бензин поступает в цилиндр через впускной клапан.Затем бензин сжимается в цилиндр следующим движением поршня в ожидании воспламенения.

Двигатель внутреннего сгорания может иметь от одного до двенадцати или более цилиндров, которые действуют вместе в точно рассчитанной по времени последовательности для приведения в движение коленчатого вала. Велосипедиста на велосипеде можно описать как двухцилиндровый двигатель, в котором каждая нога помогает другой создавать мощность для управления велосипедом и подтягивать друг друга в цикле движений. Автомобили обычно имеют четырех-, шести- или восьмицилиндровые двигатели, хотя также доступны двух- и двенадцатицилиндровые двигатели.Количество цилиндров влияет на рабочий объем двигателя; то есть общий объем топлива, прошедшего через цилиндры. Больший рабочий объем позволяет сжигать больше топлива, создавая больше энергии для привода коленчатого вала.

Искра попадает через свечу зажигания, расположенную в головке блока цилиндров. Искра вызывает взрыв бензина. Свечи зажигания содержат два металлических конца, называемых электродами, которые входят в цилиндр. У каждого цилиндра своя свеча зажигания. Когда электрический ток проходит через свечу зажигания, ток переходит от одного электрода к другому, создавая искру.

Этот электрический ток возникает в батарее. Однако ток батареи недостаточно силен, чтобы вызвать искру, необходимую для воспламенения топлива. Поэтому он пропускается через трансформатор, который значительно увеличивает его напряжение или силу. Затем ток можно направить на свечу зажигания.

Однако в случае двигателя с двумя или более цилиндрами искра должна направляться в каждый цилиндр по очереди. Последовательность срабатывания цилиндров должна быть рассчитана таким образом, чтобы, пока один поршень находился в рабочем такте, другой поршень находился в такте сжатия.Таким образом, сила, действующая на коленчатый вал, может поддерживаться постоянной, что позволяет двигателю работать плавно. Количество цилиндров влияет на плавность работы двигателя; чем больше цилиндров, тем постояннее усилие на коленчатом валу и тем плавнее будет работать двигатель.

Время срабатывания цилиндров регулируется распределителем. Когда ток поступает в распределитель, он направляется к свечам зажигания через провода, по одному на каждую свечу зажигания. Механические распределители — это, по сути, вращающиеся роторы, которые по очереди пропускают ток в каждый провод.Электронные системы зажигания используют компьютерные компоненты для выполнения этой задачи.

В самых маленьких двигателях используется аккумулятор, который при разряде просто заменяется. Однако в большинстве двигателей предусмотрена возможность перезарядки батареи, используя движение вращающегося коленчатого вала для выработки тока обратно в батарею.

Поршень или поршни давят на коленчатый вал и тянут его вверх, вызывая его вращение. Это преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала возможно, потому что для каждого поршня коленчатый вал имеет кривошип, то есть секцию, расположенную под углом к ​​движению вверх-вниз.На коленчатом валу с двумя или более цилиндрами эти кривошипы также установлены под углом друг к другу, что позволяет им работать согласованно. Когда один поршень толкает кривошип вниз, второй кривошип толкает его поршень вверх.

Большое металлическое колесо, похожее на маховик, прикреплено к одному концу коленчатого вала. Он поддерживает постоянное движение коленчатого вала. Это необходимо для четырехтактного двигателя, поскольку поршни совершают рабочий ход только один раз на каждые четыре хода.Маховик обеспечивает импульс, переносящий коленчатый вал во время его движения, пока он не получит следующий рабочий ход. Он делает это с помощью инерции, то есть принципа, согласно которому движущийся объект будет стремиться оставаться в движении. Как только маховик приводится в движение поворотом коленчатого вала, он продолжает двигаться и вращать коленчатый вал. Однако чем больше цилиндров в двигателе, тем меньше ему нужно будет полагаться на движение маховика, потому что большее количество поршней будет поддерживать вращение коленчатого вала.

После того, как коленчатый вал вращается, его движение можно адаптировать для самых разных целей путем присоединения шестерен, ремней или других устройств. Колеса можно заставить вращаться, пропеллеры можно заставить вращаться, или двигатель можно использовать просто для выработки электроэнергии. К коленчатому валу также прикреплен дополнительный вал, называемый распределительным валом, который открывает и закрывает впускные и выпускные клапаны каждого цилиндра в последовательности с четырехтактным циклом поршней. Кулачок — это колесо, имеющее форму яйца, с длинным и коротким концом.К распределительному валу крепится несколько кулачков в зависимости от количества цилиндров двигателя. Сверху кулачков установлены толкатели, по два на каждый цилиндр, которые открывают и закрывают клапаны. Когда распределительный вал вращается, короткие концы позволяют толкателям отводить назад от клапана, заставляя клапан открываться; длинные концы кулачков толкают стержни назад к клапану, снова закрывая его. В некоторых двигателях, называемых двигателями с верхним расположением кулачка, распределительный вал опирается непосредственно на клапаны, что устраняет необходимость в узле толкателя.Двухтактные двигатели, поскольку впуск и выпуск достигаются за счет движения поршня над портами или отверстиями в стенке цилиндра, не требуют распределительного вала.

Коленчатый вал может приводить в действие еще два компонента: системы охлаждения и смазки. Взрыв топлива создает сильное тепло, которое быстро приведет к перегреву двигателя и даже к расплавлению, если он не будет должным образом рассеян или отведен. Охлаждение достигается двумя способами: через систему охлаждения и, в меньшей степени, через систему смазки.

Есть два типа систем охлаждения. В системе жидкостного охлаждения используется вода, которая часто смешивается с антифризом для предотвращения замерзания. Антифриз снижает температуру замерзания, а также повышает температуру кипения воды. Вода, которая очень хорошо собирает тепло, прокачивается вокруг двигателя через ряд каналов, содержащихся в рубашке. Затем вода циркулирует в радиаторе, который состоит из множества трубок и тонких металлических пластин, увеличивающих площадь поверхности воды. Вентилятор, прикрепленный к радиатору, пропускает воздух по трубке, дополнительно снижая температуру воды.И насос, и вентилятор приводятся в действие движением коленчатого вала.

В системах с воздушным охлаждением для отвода тепла от двигателя используется воздух, а не вода. В большинстве мотоциклов, многих небольших самолетов и других машин, движение которых создает сильный ветер, используются системы воздушного охлаждения. В них металлические ребра прикреплены к внешней стороне цилиндров, создавая большую площадь поверхности; когда воздух проходит через ребра, тепло, передаваемое к металлическим ребрам от цилиндра, уносится воздухом.

Смазка двигателя жизненно важна для его работы. Движение деталей друг относительно друга вызывает сильное трение, которое вызывает нагревание и вызывает износ деталей. Смазочные материалы, например масло, образуют тонкий слой между движущимися частями. Прохождение масла

КЛЮЧЕВЫЕ ТЕРМИНЫ

Инерция — Тенденция движущегося объекта оставаться в движении, а тенденция покоящегося объекта оставаться в покое.

Возвратно-поступательное движение — движение, при котором объект перемещается вверх и вниз или назад и вперед.

Вращательное движение — Движение, при котором объект вращается.

через двигатель также помогает отводить часть выделяемого тепла.

Коленчатый вал в нижней части двигателя упирается в картер. Он может быть заполнен маслом, или отдельный масляный поддон под картером служит резервуаром для масла. Насос подает масло по каналам и отверстиям к различным частям двигателя. Поршень также оснащен резиновыми маслосъемными кольцами в дополнение к компрессионным кольцам для перемещения масла вверх и вниз по внутренней части цилиндра.Двухтактные двигатели используют масло как часть своей топливной смеси, обеспечивая смазку двигателя и устраняя необходимость в отдельной системе.

КНИГИ

Кроул, Дэниел А. Понимание взрывов . Нью-Йорк: Центр безопасности химических процессов, Американский институт инженеров-химиков, 2003.

Ниссен, Уолтер, Р. Процессы сжигания и сжигания . Нью-Йорк: Марсель Деккер, 2002.

Политцер, Питер и Джейн С. Мюррей, ред. Энергетические материалы . Амстердам, Нидерланды, и Бостон, Массачусетс: Elsevier, 2003.

ML Cohen

The Gale Encyclopedia of Science Cohen, M.

Краткая история двигателя внутреннего сгорания — _ помнит

18 апреля 2019 г.

You можно было ходить пешком, верхом на лошади или путешествовать в экипаже — после изобретения колеса возможности, доступные человечеству для путешествий по суше, почти не развивались в течение 4000 лет. Это не изменилось до появления новаторов и изобретателей в конце 19 века.После того, как железная дорога позволила перевозить большое количество людей и товаров в отличном стиле, именно двигатель внутреннего сгорания коренным образом изменил индивидуальную мобильность. Наша краткая история двигателя внутреннего сгорания связана с рассказом о том, как он был изобретен, как он стал использоваться в первых автомобилях и что было сделано для снижения рисков, связанных с этой инновацией в области высокоскоростной мобильной связи.

Однажды в августе 1888 года жители Вислоха, Брухзаля и Дурлаха имели все основания для удивления: трехколесная повозка, напоминавшая нечто среднее между конной повозкой и велосипедом, катилась по улицам их городов. .За исключением того, что лошадей поблизости не было. И трое пассажиров, женщина и двое молодых людей, похоже, не крутили педали. Транспортное средство, по-видимому, двигалось на собственном ходу, управляемом рукояткой, которую женщина держала. Женщину звали Берта Бенц, подростками — ее сыновья Ричард и Ойген, а транспортным средством — запатентованный Бенц автомобиль № 3.

Карл Бенц, муж Берты, запатентовал первую версию автомобиля еще в 1886 году и представил автомобиль широкой публике в июле того же года во время тест-драйва в Мангейме.«Не может быть никаких сомнений в том, что этот моторизованный велосипед скоро обретет множество друзей», — было эйфорическое заявление Neue Badische Landeszeitung 4 июня 1886 года. , а экономический успех оказался недостижимым. Чтобы оживить упавшее настроение мужа и убедить современников в практичности нового транспортного средства, Берта Бенц решила провести тщательный тест-драйв, хотя и не предупредив своего колеблющегося мужа заранее.Утром она и ее сыновья выехали на 104-километровую дорогу из Мангейма в свой родной город Пфорцхайм, куда они благополучно доехали через 12 часов 57 минут.

Эта поездка считается первой поездкой на дальние расстояния в истории автомобилестроения и по сей день отмечается как «Маршрут памяти Берты Бенц». Насколько велико было в то время рекламное воздействие, все еще остается предметом споров среди исследователей. Одно можно сказать наверняка: после этого запатентованный автомобиль Benz начал свой медленный, но верный путь в гору к коммерческому успеху.К 1893 году было продано 69 автомобилей, в основном в США, Англии и особенно во Франции, где благодаря хорошим дорогам первые автолюбители не были так сильно потрясены. На рубеже веков компания Benz & Cie. Уже поставила 1709 экземпляров своих автомобилей. Количество сотрудников превысило 430 человек, что в десять раз больше.

Двигатели внутреннего сгорания | IFPEN

Двигатель внутреннего сгорания автомобиля обычно включает несколько камер сгорания .Каждый из них ограничен головкой блока цилиндров, цилиндром и поршнем.

Архитектура двигателя также шарнирно закреплена вокруг системы коленчатого вала , что позволяет преобразовывать возвратно-поступательное движение (движение поршня) во вращательное движение (вращение коленчатого вала).


Во время каждого цикла сжигание топливной смеси (воздушно-топливной смеси) в камере приводит к увеличению давления газа, который приводит в движение поршень и систему коленчатого вала. Поскольку коленчатый вал соединен с механическими элементами трансмиссии (коробки передач, карданные валы и т. Д.)), его движение приводит в движение колеса автомобиля.

Коробка передач позволяет адаптировать скорость вращения колеса к скорости вращения двигателя.

Мощность двигателя зависит, в первую очередь, от количества энергии, генерируемой при сгорании, а следовательно, от количества топливной смеси, присутствующей в камере сгорания. Таким образом, он напрямую связан с объемом камеры (единичный рабочий объем), количеством камер или цилиндров в двигателе (общий объем) и количеством впрыскиваемого топлива.

Почему «4-х тактный»?

Термин относится к тому факту, что для преобразования химической энергии, содержащейся в топливе, в механическую энергию требуется 4 отдельных хода. . Каждый ход соответствует половине оборота коленчатого вала (одно движение поршня вверх или вниз). Такты 1 и 4 предназначены для передачи газа (прием свежего газа и выбрасываемых выхлопных газов), а такты 2 и 3 необходимы для подготовки к сгоранию с последующим самим сгоранием и его преобразованием в механическую энергию.

Для двигателя с искровым зажиганием и непрямым впрыском топлива 4 такта являются следующими:

  • 1 st ход : Впуск (заполнение цилиндра)
    Поршень опускается и втягивает топливовоздушную смесь.
  • 2 nd ход : Сжатие
    Поршень снова поднимается, сжимая топливовоздушную смесь. Для воспламенения смеси образуется искра.
  • 3 rd ход : Горение — расширение
    Этот ход соответствует развитию горения и расширению сгоревших газов: поршень сжимается, и химическая энергия преобразуется в механическую энергию.
  • 4 -й ход : Выхлоп (Сгоревшие газы выходят из цилиндра)
    Поршень снова поднимается и удаляет сгоревшие газы.

Для дизельного двигателя с воспламенением от сжатия и непосредственным впрыском топлива 4 такта работают одинаково, с двумя отличиями:

  • Чистый воздух всасывается и сжимается во время тактов 1 и 2 , затем топливо вводится непосредственно в цилиндр (путем впрыска) в конце сжатия.
  • Смесь самовозгорается без искры из-за высокой температуры воздуха в результате его сжатия.

Цетановое число / октановое число

Цетановое число указывает на способность дизельного топлива самовоспламеняться.

Октановое число указывает на способность бензина противостоять самовоспламенению и предотвращать неконтролируемое возгорание из-за электрической искры (ненормальное горение, детонация).

Что такое горение?

Теоретически для полного сгорания 1 г обычного топлива (бензина или дизельного топлива) требуется около 14,6 г воздуха. Эта идеальная смесь называется стехиометрической.

Бензиновые двигатели с непрямым впрыском топлива в основном работают на стехиометрической смеси . После введения в двигатель гомогенной смеси воздуха и бензина сгорание (воспламенение смеси) инициируется искрой (искровое зажигание).Горение вызывает распространение фронта пламени, который проходит через камеру.

Современные бензиновые двигатели с прямым впрыском : воздух поступает через впускное отверстие, а топливо, как в дизельном двигателе, поступает непосредственно в камеру сгорания, что позволяет более точно управлять впрыском. Вместо топливовоздушной смеси двигатель работает на так называемом стратифицированном заряде. Горение по-прежнему инициируется искрой (искровое зажигание).

Дизельные двигатели работают с избытком воздуха .Дизель впрыскивается под давлением в предварительно сжатую воздушную массу. Возгорание инициируется самовоспламенением (воспламенение от сжатия). Сгорание называют расслоенным или неоднородным, поскольку оно происходит как в богатой топливом (расположенной рядом с соплом форсунки), так и в бедной (рядом со стенкой цилиндра) зонах.

Топливо

В Европе используются бензиновые или дизельные двигатели с искровым зажиганием. Бензин и дизельное топливо являются двумя основными конечными продуктами, получаемыми в результате переработки сырой нефти, и их состав меняется в зависимости от требований к двигателям и, что более важно, экологических норм, связанных с качеством воздуха и сокращением выбросов парниковых газов.

Биотопливо можно смешивать непосредственно с бензином и дизельным топливом в различных пропорциях без необходимости адаптации двигателей, тем самым извлекая выгоду из существующих распределительных сетей. Во Франции дизельное топливо B7, продаваемое на заправке, обычно содержит до 7% (по объему) биотоплива и бензина E10 до 10%.

Какое будущее у двигателя внутреннего сгорания?

С более строгими стандартами выбросов и появлением электрических силовых агрегатов может показаться, что дни двигателей внутреннего сгорания сочтены.Но инженерное объяснение Ведущий Джейсон Фенске считает, что внутреннее сгорание будет продолжаться благодаря новым технологиям.

Fenske довольно оптимистично оценивает долговечность двигателя внутреннего сгорания, как из-за присущего бензину преимущества по плотности энергии над батареями, так и из-за технологий повышения эффективности. В этом видео он более подробно рассматривает некоторые из этих технологий.

Один из вариантов — воспламенение от сжатия однородного заряда (HCCI).Двигатель HCCI сжигает бензин, но использует воспламенение от сжатия, как и дизельный двигатель, а не свечу зажигания. Теоретически это обеспечивает эффективность дизеля без образования сажи и высоких уровней выбросов оксидов азота (NOx). Однако для этого требуется гораздо более точный контроль температуры на впуске, а также момента зажигания.

Феррари 488 GT Modificata

Следующая опция — воспламенение от сжатия с предварительным смешиванием заряда (PCCI). Фенске описал это как «золотую середину» между воспламенением от сжатия дизельного двигателя и HCCI, потому что он впрыскивает немного топлива раньше, чтобы позволить ему смешаться с воздухом в камере сгорания, а затем впрыскивает больше топлива позже.Это обеспечивает больший контроль времени зажигания, чем HCCI, но также может создавать очаги несгоревших побочных продуктов углеводородов, что плохо сказывается на выбросах. По словам Фенске, двигатели PCCI также имеют довольно узкий рабочий диапазон с высоким потенциалом детонации при полностью открытой дроссельной заслонке.

Наконец, у нас есть воспламенение от сжатия с контролируемой реактивностью (RCCI). При этом используются два вида топлива: топливо с низкой реактивностью (например, бензин), которое впрыскивается через порт, и топливо с высокой реактивностью (например, дизельное топливо), которое впрыскивается напрямую.«Реакционная способность» относится к тенденции топлива воспламеняться при сжатии. По словам Фенске, этот метод приводит к значительному повышению эффективности, но по-прежнему с довольно высокими выбросами. Сложность использования двух видов топлива также может сделать его коммерчески не пусковым.

Эти альтернативные конструкции двигателей внутреннего сгорания могут быть еще не готовы к использованию, но автопроизводители стремятся выжать каждую каплю эффективности из сегодняшних бензиновых двигателей, используя более совершенные технологии, такие как прямой впрыск.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *